skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discriminative Topic Mining via Category-Name Guided Text Embedding
Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users’ particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-name guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines highquality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.  more » « less
Award ID(s):
1741317 1618481 1704532
PAR ID:
10160118
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
WWW '20: The Web Conference 2020
Volume:
1
Issue:
1
Page Range / eLocation ID:
2121 to 2132
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. 
    more » « less
  2. Dynamic topic models (DTMs) analyze text streams to capture the evolution of topics. Despite their popularity, existing DTMs are either fully supervised, requiring expensive human annotations, or fully unsupervised, generating topic evolutions that often do not cater to a user’s needs. Further, the topic evolutions produced by DTMs tend to contain generic terms that are not indicative of their designated time steps. To address these issues, we propose the task of discriminative dynamic topic discovery. This task aims to discover topic evolutions from temporal corpora that distinctly align with a set of user-provided category names and uniquely capture topics at each time step. We solve this task by developing DynaMiTE, a framework that ensembles semantic similarity, category indicative, and time indicative scores to produce informative topic evolutions. Through experiments on three diverse datasets, including the use of a newly-designed human evaluation experiment, we demonstrate that DynaMiTE is a practical and efficient framework for helping users discover high-quality topic evolutions suited to their interests. 
    more » « less
  3. Traditionally, many text-mining tasks treat individual word-tokens as the finest meaningful semantic granularity. However, in many languages and specialized corpora, words are composed by concatenating semantically meaningful subword structures. Word-level analysis cannot leverage the semantic information present in such subword structures. With regard to word embedding techniques, this leads to not only poor embeddings for infrequent words in long-tailed text corpora but also weak capabilities for handling out-of-vocabulary words. In this paper we propose MorphMine for unsupervised morpheme segmentation. MorphMine applies a parsimony criterion to hierarchically segment words into the fewest number of morphemes at each level of the hierarchy. This leads to longer shared morphemes at each level of segmentation. Experiments show that MorphMine segments words in a variety of languages into human-verified morphemes. Additionally, we experimentally demonstrate that utilizing MorphMine morphemes to enrich word embeddings consistently improves embedding quality on a variety of of embedding evaluations and a downstream language modeling task. 
    more » « less
  4. null (Ed.)
    Categorizing documents into a given label hierarchy is intuitively appealing due to the ubiquity of hierarchical topic structures in massive text corpora. Although related studies have achieved satisfying performance in fully supervised hierarchical document classification, they usually require massive human-annotated training data and only utilize text information. However, in many domains, (1) annotations are quite expensive where very few training samples can be acquired; (2) documents are accompanied by metadata information. Hence, this paper studies how to integrate the label hierarchy, metadata, and text signals for document categorization under weak supervision. We develop HiMeCat, an embedding-based generative framework for our task. Specifically, we propose a novel joint representation learning module that allows simultaneous modeling of category dependencies, metadata information and textual semantics, and we introduce a data augmentation module that hierarchically synthesizes training documents to complement the original, small-scale training set. Our experiments demonstrate a consistent improvement of HiMeCat over competitive baselines and validate the contribution of our representation learning and data augmentation modules. 
    more » « less
  5. null (Ed.)
    Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this pa-per, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, neglecting the benefit of coupling both, or are based on topic models that may contain overlapping concepts. We propose to first learn sentiment, aspectjoint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4%and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets. 
    more » « less