skip to main content

This content will become publicly available on August 14, 2022

Title: On the Power of Pre-Trained Text Representations: Models and Applications in Text Mining
Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how more » pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. « less
; ; ;
Award ID(s):
1956151 1741317 1704532
Publication Date:
Journal Name:
KDD'21:The 27th {ACM} {SIGKDD} Conference on Knowledge Discovery and Data Mining, August 14-18, 2021
Sponsoring Org:
National Science Foundation
More Like this
  1. External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks in a similar fashion to pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
  2. Mining a set of meaningful and distinctive topics automatically from massive text corpora has broad applications. Existing topic models, however, typically work in a purely unsupervised way, which often generate topics that do not fit users’ particular needs and yield suboptimal performance on downstream tasks. We propose a new task, discriminative topic mining, which leverages a set of user-provided category names to mine discriminative topics from text corpora. This new task not only helps a user understand clearly and distinctively the topics he/she is most interested in, but also benefits directly keyword-driven classification tasks. We develop CatE, a novel category-namemore »guided text embedding method for discriminative topic mining, which effectively leverages minimal user guidance to learn a discriminative embedding space and discover category representative terms in an iterative manner. We conduct a comprehensive set of experiments to show that CatE mines highquality set of topics guided by category names only, and benefits a variety of downstream applications including weakly-supervised classification and lexical entailment direction identification.« less
  3. Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurringmore »word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a Transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods.« less
  4. Traditionally, many text-mining tasks treat individual word-tokens as the finest meaningful semantic granularity. However, in many languages and specialized corpora, words are composed by concatenating semantically meaningful subword structures. Word-level analysis cannot leverage the semantic information present in such subword structures. With regard to word embedding techniques, this leads to not only poor embeddings for infrequent words in long-tailed text corpora but also weak capabilities for handling out-of-vocabulary words. In this paper we propose MorphMine for unsupervised morpheme segmentation. MorphMine applies a parsimony criterion to hierarchically segment words into the fewest number of morphemes at each level of the hierarchy.more »This leads to longer shared morphemes at each level of segmentation. Experiments show that MorphMine segments words in a variety of languages into human-verified morphemes. Additionally, we experimentally demonstrate that utilizing MorphMine morphemes to enrich word embeddings consistently improves embedding quality on a variety of of embedding evaluations and a downstream language modeling task.« less
  5. In standard methodology for natural language processing, entities in text are typically embedded in dense vector spaces with pre-trained models. The embeddings produced this way are effective when fed into downstream models, but they require end-task fine-tuning and are fundamentally difficult to interpret. In this paper, we present an approach to creating entity representations that are human readable and achieve high performance on entity-related tasks out of the box. Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types, indicating the confidence of a typing model’s decision that the entity belongs to the corresponding type. Wemore »obtain these representations using a fine-grained entity typing model, trained either on supervised ultra-fine entity typing data (Choi et al., 2018) or distantly-supervised examples from Wikipedia. On entity probing tasks involving recognizing entity identity, our embeddings used in parameter-free downstream models achieve competitive performance with ELMo- and BERT-based embeddings in trained models. We also show that it is possible to reduce the size of our type set in a learning-based way for particular domains. Finally, we show that these embeddings can be post-hoc modified through a small number of rules to incorporate domain knowledge and improve performance.« less