Abstract Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties.
more »
« less
Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals
Abstract Surface capping agents have been extensively used to control the evolution of seeds into nanocrystals with diverse but well‐controlled shapes. Here we offer a comprehensive review of these agents, with a focus on the mechanistic understanding of their roles in guiding the shape evolution of metal nanocrystals. We begin with a brief introduction to the early history of capping agents in electroplating and bulk crystal growth, followed by discussion of how they affect the thermodynamics and kinetics involved in a synthesis of metal nanocrystals. We then present representative examples to highlight the various capping agents, including their binding selectivity, molecular‐level interaction with a metal surface, and impacts on the growth of metal nanocrystals. We also showcase progress in leveraging capping agents to generate nanocrystals with complex structures and/or enhance their catalytic properties. Finally, we discuss various strategies for the exchange or removal of capping agents, together with perspectives on future directions.
more »
« less
- Award ID(s):
- 1804970
- PAR ID:
- 10160305
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 59
- Issue:
- 36
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 15378-15401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Shape control has been a major theme of nanocrystal research in terms of synthesis, property tailoring, and optimization of performance in a variety of applications. Among the possible shapes, bipyramids are unique owing to their symmetry, planar defects, and exposed facets. In this article, we focus on the colloidal synthesis of noble‐metal nanocrystals featuring a triangular bipyramidal shape, together with highlights of their properties and applications. We start with a brief discussion of the general classification and requirements for the nucleation and growth of bipyramidal nanocrystals, followed by specific aspects regarding the synthetic methods with a focus on the roles of reduction, etching, and capping, as well as controls of facet, size, aspect ratio, and corner truncation. In the end, we illustrate how these aspects affect the properties of bipyramidal nanocrystals for plasmonic and catalytic applications, together with future perspectives.more » « less
-
Abstract We report a robust method for effectively removing the chemisorbed Br−ions, a capping agent, from the surface of Pd nanocubes to maximize their catalytic activity. The Br−ions can be removed by simply heating the sample in water, but the desorption of Br−ions will expose the underneath Pd atoms to the O2from air for the formation of a relatively thick oxide layer. During potential cycling, the oxide layer evolves into detrimental features such as steps and terraces. By introducing a trace amount of hydrazine into the system, the Br−ions can be removed by heating without forming a thick oxide layer. The as‐cleaned nanocubes show greatly enhanced activity toward formic acid oxidation. This cleaning method can also remove Br−ions from Rh nanocubes and it is expected to work for other combinations of nanocrystals and capping agents.more » « less
-
This work presents multiple experimental evidences coherently showing that the versatile structural evolution of Au nanocrystals during seed-mediated growth under the guidance of foreign metal ions and halide-containing surfactants is essentially dictated by the dynamic interplay between oxidative etching and nanocrystal growth. Coupling nanocrystal growth with oxidative etching under kinetically controlled conditions enables the in situ surface carving of the growing nanocrystals, through which the surface topography of shape-controlled nanocrystals can be deliberately tailored on the nanometer length-scale.more » « less
-
Palladium-based nanostructures have attracted the attention of researchers due to their useful catalytic properties and unique ability to form hydrides, which finds application in hydrogen storage and hydrogen detection. Palladium-based nanowires have some inherent advantages over other Pd nanomaterials, combining high surface-to-volume ratio with good thermal and electron transport properties, and exposing high-index crystal facets that can have enhanced catalytic activity. Over the past two decades, both synthesis methods and applications of 1D palladium nanostructures have advanced greatly. In this review, we start by discussing different types of 1D palladium nanostructures before moving on to the different synthesis approaches that can produce them. Next, we discuss factors including kinetic vs. thermodynamic control of growth, oxidative etching, and surface passivation that affect palladium nanowire synthesis. We also review efforts to gain insight into growth mechanisms using different characterization tools. We discuss the effects of concentration of capping agents, reducing agents, metal halides, pH, and sacrificial oxidation on the growth of Pd-based nanowires in solution, from shape control, to yield, to aspect ratio. Various applications of palladium and palladium alloy nanowires are then discussed, including electrocatalysis, hydrogen storage, and sensing of hydrogen and other chemicals. We conclude with a summary and some perspectives on future research directions for this category of nanomaterials.more » « less
An official website of the United States government
