skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leveraging Social Capital to Broaden Participation in STEM
Broadening participation in science, technology, engineering, and mathematics (STEM) is critical to the nation’s economic growth and national security. In K–12 and higher education, researchers and educators increasingly employ the concept of social capital to develop programs for improving STEM learning, motivation, and participation of young students. STEM social capital in education comprises STEM-oriented resources—whether instrumental, informational, or emotional—that students access through their social networks. Major theoretical perspectives, research evidence, and promising practices are associated with the concepts of social capital in STEM education. Students’ social capital in STEM education (derived from families, peers, teachers, and professional networks) demonstrably promotes their STEM educational outcomes and career paths. Inclusive STEM schools, mentoring, and after-school programs are some promising approaches that can enhance STEM social capital and outcomes of underrepresented students, particularly women, Blacks/Hispanics/Native Americans, youth with low socioeconomic status, and persons with disabilities.  more » « less
Award ID(s):
1937722 1749275 2113395
PAR ID:
10160480
Author(s) / Creator(s):
Date Published:
Journal Name:
Policy Insights from the Behavioral and Brain Sciences
Volume:
7
Issue:
1
ISSN:
2372-7322
Page Range / eLocation ID:
35 to 43
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less
  2. Research shows that the LGBTQ climate in engineering, and other STEM, undergraduate degree programs is rife with heteronormativity and cissexism, leading LGBTQ students to leave STEM majors and careers at higher rates than their heterosexual, cisgender peers. In order to develop a diverse STEM workforce and adequately prepare the next generation of professionals in STEM, higher education, and especially engineering education, must address inequities such as these to ensure broad participation in STEM fields. This NSF CAREER-funded project helps meet this need by examining the participation of LGBTQ students in STEM fields. The project focuses on three primary research aims to address this purpose: test the relationships between the composition of LGBTQ students’ social networks and non-cognitive STEM outcomes, compare STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and explore the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in STEM by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. The purpose of this poster is to present preliminary outcomes from the first research aim of the project, which is to test the relationship between composition of students’ social networks and non-cognitive outcomes, and compare these relationships by sexual and gender identities. We hypothesize that homophily within students’ social networks, especially for heterosexual and cisgender students, will predict greater levels of identification with one’s STEM discipline, sense of belonging in STEM, and commitment to a STEM major. LGBTQ students whose LGBTQ connections are primarily outside STEM are hypothesized to feel more of a pull away from STEM. This poster focuses on the social network analysis phase of the project, including instrument development, data collection procedures, and preliminary analysis of the data. Data collection will commence in the spring 2022 semester. Social network analysis (SNA) is a method that measures and represents the patterns and information of contextually bound structural relationships to explain why the relationships occur and the outcomes of their existence, and SNA is only recently gaining ground in educational research. We developed a survey that incorporates generating an ego-centric social network, or the people an individual relies on most for support, with existing measures for sense of belonging, discipline-based identity, and commitment to field of study, adapted for this study’s purpose. The survey validation procedure included cognitive interviews with undergraduate students and expert reviews by engineering education and institutional research experts. Data collection will occur at five colleges and universities nation-wide, representing a range of institutional types, geographical diversity, and student body diversity. The poster will detail the theory and procedures that constitute SNA research, the survey development process for this phase of the project, and preliminary results from analysis of the data. 
    more » « less
  3. null (Ed.)
    This study explores how participation in an out-of-school time (OST) STEM summer program over multiple years improves STEM learning and motivation among a diverse sample of adolescents. In this study, we focus on a qualitative case study of a multi-site OST STEM summer program in the southwest U.S. We discuss how students who participate in OST STEM summer programs enhance their human and social capital, which increases their STEM learning and interest. Specifically, we find that participation leads to advanced STEM learning, expanding one’s social network to include individuals with shared interests in STEM, and access and interaction with real-world STEM knowledge. 
    more » « less
  4. Karunakaran, S.; Higgins, A. (Ed.)
    Social Network Analysis is a method to analyze individuals’ social accessibility and power. We adapt it to change inequitable issues in STEM postsecondary education. Equity issues in mathematics education, such as underrepresented women and racial disparities, are prevalent. With the social capital perspective, we investigate the demographic characteristics of influential students and their social networks. Seventeen participants are undergraduate students in an inquiry-oriented linear algebra course. The number of nominations on discussion boards as “Shout-out” is data to measure influence and map the social network. By analyzing data with UCINET, we found that (1) the most influential students are non-White males and the principal components of the network are male-dominant, and (2) there is a female-dominant small cluster and female students have reciprocal networks. This study suggests further discussions of (1) how discussion boards position students with the social capital perspective and (2) intersectionality, especially for women of color. 
    more » « less
  5. Karunakaran, S.; Higgins, A. (Ed.)
    Social Network Analysis is a method to analyze individuals’ social accessibility and power. We adapt it to change inequitable issues in STEM postsecondary education. Equity issues in mathematics education, such as underrepresented women and racial disparities, are prevalent. With the social capital perspective, we investigate the demographic characteristics of influential students and their social networks. Seventeen participants are undergraduate students in an inquiry-oriented linear algebra course. The number of nominations on discussion boards as “Shout-out” is data to measure influence and map the social network. By analyzing data with UCINET, we found that (1) the most influential students are non-White males and the principal components of the network are male-dominant, and (2) there is a female-dominant small cluster and female students have reciprocal networks. This study suggests further discussions of (1) how discussion boards position students with the social capital perspective and (2) intersectionality, especially for women of color. 
    more » « less