skip to main content


Title: Decision Making in Engineering Capstone Design: Participants’ Reactions to a Workshop about Diverse Types of Reasoning
Engineers are expected to make decisions in the context of design, which is ill-structured. Capstone courses serve as an opportunity for engineering students to engage in design and practice making decisions that do not have a single correct answer. Empirical research has demonstrated that when making such decisions, people use informal reasoning, of which there are multiple types: rationalistic, intuitive, and empathic. Despite this reality, engineering education often portrays decision making in the context of engineering design as objective. For example, capstone design instruction typically focuses on providing students with tools to facilitate rational reasoning alone. In this paper, we introduce a framework for informal reasoning that can be used to think critically about how we teach decision making in the context of engineering capstone design. In addition, we use this paper to briefly describe the ways in which capstone design conference attendees engaged with this framework when it was presented in a workshop during the 2018 Capstone Design Conference. To conclude, we present preliminary recommendations for capstone design educators to integrate more opportunities for diverse and realistic forms of reasoning in their teaching practices.  more » « less
Award ID(s):
1763357
NSF-PAR ID:
10160485
Author(s) / Creator(s):
Date Published:
Journal Name:
IJEE International Journal of Engineering Education
Volume:
36
Issue:
6B
ISSN:
2540-9808
Page Range / eLocation ID:
1907-1917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Innovative Practice Full Paper presents a novel, narrative, game-based approach to introducing first-year engineering students to concepts in ethical decision making. Approximately 250 first-year engineering students at the University of Connecticut played through our adventure, titled Mars: An Ethical Expedition, by voting weekly as a class on a presented dilemma. Literature shows that case studies still dominate learning sciences research on engineering ethical education, and that novel, active learning-based techniques, such as games, are infrequently used but can have a positive impact on both student engagement and learning. In this work, we suggest that games are a form of situated (context-based) learning, where the game setting provides learners with an authentic but safe space in which to explore engineering ethical choices and their consequences. As games normalize learning through failure, they present a unique opportunity for students to explore ethical decision making in a non-judgmental, playful, and safe way.We explored the situated nature of ethical decision making through a qualitative deconstruction of the weekly scenarios that students engaged with over the course of the twelve-week narrative. To assess their ethical reasoning, students took the Engineering Ethics Reasoning Instrument (EERI), a quantitative engineering ethics reasoning survey, at the beginning and end of the semester. The EERI scenarios were deconstructed to reveal their core ethical dilemmas, and then common elements between the EERI and our Mars adventure were compared to determine how students responded to similar ethical dilemmas presented in each context.We noted that students' responses to the ethical decisions in the Mars adventure scenarios were sometimes substantially different both from their response to the EERI scenario as well as from other decisions they made within the context of the game, despite the core ethical dilemma being the same. This suggests that they make ethical decisions in some situations that differ from a presumed abstract understanding of post-conventional moral reasoning. This has implications for how ethical reasoning can be taught and scaffolded in educational settings. 
    more » « less
  2. null (Ed.)
    Engineering design decisions have non-trivial implications, and empathic approaches are one way that engineers can understand and translate the perspectives of diverse stakeholders. Prior literature demonstrates that students must develop empathic skills and beliefs that these skills are important to embody empathic approaches in meaningful ways. However, we have limited understanding of the relationship between students’ beliefs about the value of empathy in engineering decision making and how they describe their reported use of empathic approaches. We collected qualitative data through interviews with ten undergraduate engineering students in capstone design. We found that our participants espoused a belief that empathic approaches are valuable in engineering design decisions. However, while students considered diverse perspectives when describing how they made design decisions, their reported behaviour during design decisions did not demonstrate translation of their empathic understanding. Based on these findings, we provide recommendations to educators and researchers. 
    more » « less
  3. null (Ed.)
    Engineering design decisions have non-trivial implications, and empathic approaches are one way that engineers can understand and translate the perspectives of diverse stakeholders. Prior literature demonstrates that students must develop empathic skills and beliefs that these skills are important to embody empathic approaches in meaningful ways. However, we have limited understanding of the relationship between students’ beliefs about the value of empathy in engineering decision making and how they describe their reported use of empathic approaches. We collected qualitative data through interviews with ten undergraduate engineering students in capstone design. We found that our participants espoused a belief that empathic approaches are valuable in engineering design decisions. However, while students considered diverse perspectives when describing how they made design decisions, their reported behaviour during design decisions did not demonstrate translation of their empathic understanding. Based on these findings, we provide recommendations to educators and researchers. 
    more » « less
  4. null (Ed.)
    This article details the multi-year process of adding a “design thread” to our department’s electrical and computer engineering curricula. We use the conception of a “thread” to mean a sequence of courses that extend unbroken across each year of the undergraduate curriculum. The design thread includes a project-based introduction to the discipline course in the first year, a course in the second year focusing on measurement and fabrication, a course in the third year to frame technical problems in societal challenges, and culminates with our two-semester, client-driven fourth-year capstone design sequence. The impetus to create a design thread arose from preparation for an ABET visit where we identified a need for more “systems thinking” within the curriculum, particularly system decomposition and modularity; difficulty in having students make engineering evaluations of systems based on data; and students’ difficulty transferring skills in testing, measurement, and evaluation from in-class lab scenarios to more independent work on projects. We also noted that when working in teams, students operated more collectively than collaboratively. In other words, rather than using task division and specialization to carry out larger projects, students addressed all problems collectively as a group. This paper discusses the process through which faculty developed a shared conception of design to enable coherent changes to courses in the four year sequence and the political and practical compromises needed to create the design thread. To develop a shared conception of design faculty explored several frameworks that emphasized multiple aspects of design. Course changes based on elements of these frameworks included introducing design representations such as block diagrams to promote systems thinking in the first year and consistently utilizing representations throughout the remainder of the four year sequence. Emphasizing modularity through representations also enabled introducing aspects of collaborative teamwork. While students are introduced broadly to elements of the design framework in their first year, later years emphasize particular aspects. The second year course focuses on skills in fabrication and performance measurement while the third year course emphasizes problem context and users, in an iterative design process. The client-based senior capstone experience integrates all seven aspects of our framework. On the political and organizational side implementing the design thread required major content changes in the department’s introductory course, and freeing up six credit-hour equivalents, one and a half courses, in the curriculum. The paper discusses how the ABET process enabled these discussions to occur, other curricular changes needed to enable the design thread to be implemented, and methods which enabled the two degree programs to align faculty motivation, distribute the workload, and understand the impact the curricular changes had on student learning. 
    more » « less
  5. Abstract Background

    Engineers are socialized to value rational approaches to problem solving. A lack of awareness of how engineers use different decision‐making approaches is problematic because it perpetuates the ongoing development of inequitable engineering designs and contributes to a lack of inclusion in the field. Although researchers have explored how engineering students are socialized, further work is needed to understand students' beliefs about different decision‐making approaches.

    Purpose/Hypothesis

    We explored the espoused beliefs of undergraduate students about technical, empathic, experience‐based, and guess‐based approaches to engineering design decisions.

    Design/Method

    We conducted semistructured one‐on‐one interviews with 20 senior engineering students at the conclusion of their capstone design experience. We used a combination of deductive and inductive data condensation approaches to generate categories of beliefs.

    Results

    We identified a total of nine categories of beliefs, organized by approach. Although students' espoused beliefs did reflect the emphasis on technical approaches present in their socialization, they also described technical approaches as limited and overvalued.

    Conclusion

    The landscape of beliefs presented make explicit both the challenges and the opportunities that students' beliefs play as the backdrop for any efforts of engineering educators to develop engineers as effective and equitable engineering designers.

     
    more » « less