skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Petrosal Anatomy of the Paleocene Eutherian Mammal Deltatherium fundaminis (Cope, 1881)
Abstract We describe the tympanic anatomy of the petrosal of Deltatherium fundaminis, an enigmatic Paleocene mammal based on cranial specimens recovered from New Mexico, U.S.A. Although the ear region of Deltatherium has previously been described, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. The dental and cranial anatomy of Deltatherium is a chimera, with morphological similarities to both ‘condylarth’ and ‘cimolestan’ taxa. As such, the phylogenetic relationships of this taxon have remained elusive since its discovery, and it has variably been associated with Arctocyonidae, Pantodonta and Tillodontia. The petrosal of Deltatherium is anteriorly bordered by an open space comprising a contiguous carotid opening and pyriform fenestra. The promontorium features both a small rostral tympanic process and small epitympanic wing but lacks well-marked sulci. A large ventral facing external aperture of the canaliculus cochleae is present and bordered posteriorly by a well-developed caudal tympanic process. The hiatus Fallopii opens on the ventral surface of the petrosal. The tegmen tympani is mediolaterally broad and anteriorly expanded, and its anterior margin is perforated by a foramen for the ramus superior of the stapedial artery. The tympanohyal is small but approximates the caudal tympanic process to nearly enclose the stylomastoid notch. The mastoid is widely exposed on the basicranium and bears an enlarged mastoid process, separate from the paraoccipital process. These new observations provide novel anatomical data corroborating previous hypotheses regarding the plesiomorphic eutherian condition but also reveal subtle differences among Paleocene eutherians that have the potential to help inform the phylogeny of Deltatherium.  more » « less
Award ID(s):
1654949
PAR ID:
10329317
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Mammalian Evolution
Volume:
28
Issue:
4
ISSN:
1064-7554
Page Range / eLocation ID:
1161 to 1180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anatomy of the petrosal and associated middle ear structures are described and illustrated for the brown rat, Rattus norvegicus (Berkenhout, 1769). Although the middle ear in this iconic mammal has been treated by prior authors, there has not been a comprehensive, well-illustrated contribution using current anatomical terminology. Descriptions are based on specimens from the osteological collections of the Section of Mammals, Carnegie Museum of Natural History, and a CT scanned osteological specimen from the Texas Memorial Museum. The petrosal, ectotympanic, malleus, incus, stapes, and inner ear were segmented from the CT scans. The petrosal of the brown rat is only loosely attached to the cranium, primarily along its posterior border; it is separated from the basisphenoid, alisphenoid, and squamosal by a large piriform fenestra that transmits various neurovascular structures including the postglenoid vein. The extent of the piriform fenestra broadly exposes the tegmen tympani of the petrosal in lateral view. The floor of the middle ear is formed by the expanded ectotympanic bulla, which is tightly held to the petrosal with five points of contact. The surfaces of the petrosal affording contact with the ectotympanic bulla are the rostral tympanic process, the epitympanic wing, the tegmen tympani, two of the three parts of the caudal tympanic process, and the tympanohyal, with the ectotympanic fused to the last. The ectotympanic in turn is fused to the elongate rostral process of the malleus, which is only discoverable through the study of juvenile specimens. In addition to osteology, the major nerves, arteries, and veins of the petrosal are described and illustrated based on the literature and osteological correlates. The petrosal of the brown rat is compared with those of several Eocene rodents to put the extant form in the context of early members of the rodent lineage. Comparisons benefitted from CT scans of the middle Eocene ischromyoid Paramys delicatus Leidy, 1871, from the western United States, affording the first description of the endocranial surface of the petrosal in an Eocene rodent. The petrosals in the Eocene fossils are more tightly held in the cranium, but the ectotympanic contacts the petrosal through the same five points, with some modifications. The most unexpected discovery in Paramys delicatus was the presence of a prominent tentorial process of the parietal in contact with the reduced crista petrosa. 
    more » « less
  2. Abstract Cranial skeletal material of the Eocene palaeanodont Metacheiromys marshi was examined using high-resolution CT scans. The present study represents the first time that CT scans have been conducted on skulls of this extinct fossorial mammal. The bony osteology of the auditory region is described in detail, including the ectotympanic and entotympanic, the petrosal in both tympanic and endocranial views, and the middle ear ossicles. The results of this investigation confirm a number of derived resemblances between palaeanodonts and xenarthrans, including a large entotympanic element in the medial wall of the auditory bulla, the presence of an anteroventral process of the tegmen tympani, and a posttemporal canal. However, the present study also provides novel derived auditory features linking palaeanodonts and pangolins, consistent with current understanding of palaeanodont phylogenetic relationships, including the absence of an ectotympanic styliform process, a posterolaterally oriented aperture to the cochlear fossula, and a convex mallear head / concave incudal head. Several autapomorphic features characterizing the auditory osteology of Metacheiromys are also noted. The presence of a large, spherical mallear head, and of a capacious tympanic cavity extended into sinuses in surrounding bones, likely represent adaptations for fossoriality, consistent with palaeobiological inferences drawn from the postcranial anatomy of Metacheiromys . 
    more » « less
  3. The placental order Dermoptera, which includes two extant species, the Philippine and Sunda flying lemurs, Cynocephalus volans and Galeopterus variegatus, respectively, is generally held to be the sister group of Primates. Yet, little has been reported on their cranial anatomy. Here, the anatomy of the ear region is described and illustrated for a juvenile and adult C. volans based on CT scans. The inclusion of a juvenile is essential as nearly all cranial sutures are fused in the adult. Soft tissues are reconstructed based on sectioned histological pre- and postnatal specimens previously reported by the author. Numerous unusual features are identified, including: a small parasphenoid beneath the basisphenoid, a tensor tympani fossa on the epitympanic wing of the squamosal, a cavum supracochleare for the geniculate ganglion of the facial nerve that is not enclosed in the petrosal bone, a secondary facial foramen between the petrosal and squamosal, a secondary posttemporal foramen leading to the primary one, a subarcuate fossa that is floored in part by a large contribution from the squamosal, a body of the incus larger than the head of the malleus, and a crus longum of the incus that lacks an osseous connection to the lenticular process. Documentation of the anatomy of the Philippine flying lemur ear region is an essential first step in morphological phylogenetic analyses where features of the basicranium are widely sampled. 
    more » « less
  4. Tetrapods use their neck to move the head three-dimensionally, relative to the body and limbs. Fish lack this anatomical neck, yet during feeding many species elevate (dorsally rotate) the head relative to the body. Cranial elevation is hypothesized to result from the craniovertebral and cranial-most intervertebral joints acting as a neck, by dorsally rotating (extending). However, this has never been tested due to the difficulty of visualizing and measuring vertebral motion in vivo . I used X-ray reconstruction of moving morphology to measure three-dimensional vertebral kinematics in rainbow trout ( Oncorhynchus mykiss ) and Commerson's frogfish ( Antennarius commerson ) during feeding. Despite dramatically different morphologies, in both species dorsoventral rotations extended far beyond the craniovertebral and cranial intervertebral joints. Trout combine small (most less than 3°) dorsal rotations over up to a third of their intervertebral joints to elevate the neurocranium. Frogfish use extremely large (often 20–30°) rotations of the craniovertebral and first intervertebral joint, but smaller rotations occurred across two-thirds of the vertebral column during cranial elevation. Unlike tetrapods, fish rotate large regions of the vertebral column to rotate the head. This suggests both cranial and more caudal vertebrae should be considered to understand how non-tetrapods control motion at the head–body interface. 
    more » « less
  5. Lakotemys australodakotensis is an Early Cretaceous paracryptodire known from two shells and a skull from the Lakota Formation of South Dakota, USA. Along with the Early Cretaceous Arundelemys dardeni and the poorly known Trinitichelys hiatti , Lakotemys australodakotensis is generally retrieved as an early branching baenid, but more insights into the cranial anatomy of these taxa is needed to obtain a better understanding of paracryptodiran diversity and evolution. Here, we describe the skull of Lakotemys australodakotensis using micro-computed tomography to provide the anatomical basis for future phylogenetic analyses that will be needed to investigate more precisely the intrarelationships of Paracryptodira . Preliminary comparisons reveal that the cranial anatomy of Lakotemys australodakotensis is very similar to that of the Aptian-Albian basal baenid Arundelemys dardeni , that both taxa exhibit a remarkable combination of derived characters found in baenodds and characters found in non-baenid paracryptodires, particularly Pleurosternidae , and that Lakotemys australodakotensis is the only known baenid to date to possess a canal for the palatine artery. 
    more » « less