skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced coupling through π-stacking in imidazole-based molecular junctions
We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations. We first characterize an imidazole-gold contact by measuring the conductance of imidazolyl-terminated alkanes ( im-N-im , N = 3–6). We show that the conductance of these alkanes decays exponentially with increasing length, indicating that the mechanism for electron transport is through tunneling or super-exchange. We also reveal that π–π stacked dimers can be formed between imidazoles and have better coupling than through-bond tunneling. These experimental results are rationalized by calculations of molecular junction transmission using non-equilibrium Green's function formalism. This study verifies the capability of imidazole as a Au-binding ligand to form stable single- and π-stacked molecule junctions at room temperature.  more » « less
Award ID(s):
1764256
PAR ID:
10160770
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
43
ISSN:
2041-6520
Page Range / eLocation ID:
9998 to 10002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Designing highly insulating sub-nanometer molecules is difficult because tunneling conductance increases exponentially with decreasing molecular length. This challenge is further enhanced by the fact that most molecules cannot achieve full conductance suppression with destructive quantum interference. Here, we present results for a series of small saturated heterocyclic alkanes where we show that conductance is suppressed due to destructive interference. Using the STM-BJ technique and density functional theory calculations, we confirm that their single-molecule junction conductance is lower than analogous alkanes of similar length. We rationalize the suppression of conductance in the junctions through analysis of the computed ballistic current density. We find there are highly symmetric ring currents, which reverse direction at the antiresonance in the Landauer transmission near the Fermi energy. This pattern has not been seen in earlier studies of larger bicyclic systems exhibiting interference effects and constitutes clear-cut evidence of destructive σ-interference. The finding of heterocyclic alkanes with destructive quantum interference charts a pathway for chemical design of short molecular insulators using organic molecules. 
    more » « less
  2. Metal-molecule-metal junctions based on alkane thiol (C n T) and oligophenylene thiol (OPT n ) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au–S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current–voltage ( I – V ) characteristics. Here we show that RR < 1 for C n T and RR > 1 for OPT n junctions, in contrast to expectation, and further, that RR behaves very differently for C n T and OPT n junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and ab initio quantum chemical calculations, allows us to explain the puzzling experimental findings for C n T and OPT n in terms of different current rectification mechanisms. Specifically, in C n T-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPT n junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems. 
    more » « less
  3. NA (Ed.)
    Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has been seldom investigated. It is known that solvents can impact the electronic structure of single molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, bridge) of the thiolate on the Au surface as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions. 
    more » « less
  4. Abstract We report the first conductance measurements of [n]staffane (bicyclopentane) oligomers in single‐molecule junctions. Our studies reveal two quantum transport characteristics unique to staffanes that emerge from their strained bicyclic structure. First, though staffanes are composed of weakly conjugated C−Cσ‐bonds, staffanes carry a shallower conductance decay value (β=0.84±0.02 n−1) than alkane chain analogs (β=0.96±0.03 n−1) when measured with the scanning tunneling microscopy break junction (STM‐BJ) technique. Staffanes are thus more conductive than otherσ‐bonded organic backbones reported in the literature on a per atom basis. Density functional theory (DFT) calculations suggest staffane backbones are more effective conduits for charge transport because their significant bicyclic ring strain destabilizes the HOMO‐2 energy, aligning it more closely with the Fermi energy of gold electrodes as oligomer order increases. Second, the monostaffane is significantly lower conducting than expected. DFT calculations suggest that short monostaffanes sterically enforce insulating gauche interelectrode orientations over syn orientations; these steric effects are alleviated in longer staffanes. Moreover, we find that [2‐5]staffane wires may accommodate axial mechanical strain by “rod‐bending”. These findings show for the first time how bicyclic ring strain can enhance charge transmission in saturated molecular wires. These studies showcase the STM‐BJ technique as a valuable tool for uncovering the stereoelectronic proclivities of molecules at material interfaces. 
    more » « less
  5. With the objective of understanding microscopic principles governing thermal energy flow in nanojunctions, we study phononic heat transport through metal-molecule-metal junctions using classical molecular dynamics (MD) simulations. Considering a single-molecule gold-alkanedithiol-gold junction, we first focus on aspects of method development and compare two techniques for calculating thermal conductance: (i) The Reverse Nonequilibrium MD (RNEMD) method, where heat is inputted and extracted at a constant rate from opposite metals. In this case, the thermal conductance is calculated from the nonequilibrium temperature profile that is created at the junction. (ii) The Approach-to-Equilibrium MD (AEMD) method, with the thermal conductance of the junction obtained from the equilibration dynamics of the metals. In both methods, simulations of alkane chains of a growing size display an approximate length-independence of the thermal conductance, with calculated values matching computational and experimental studies. The RNEMD and AEMD methods offer different insights, and we discuss their benefits and shortcomings. Assessing the potential application of molecular junctions as thermal diodes, alkane junctions are made spatially asymmetric by modifying their contact regions with the bulk, either by using distinct endgroups or by replacing one of the Au contacts with Ag. Anharmonicity is built into the system within the molecular force-field. We find that, while the temperature profile strongly varies (compared with the gold-alkanedithiol-gold junctions) due to these structural modifications, the thermal diode effect is inconsequential in these systems—unless one goes to very large thermal biases. This finding suggests that one should seek molecules with considerable internal anharmonic effects for developing nonlinear thermal devices. 
    more » « less