In standard molecular junctions, a molecular structure is placed between and connected to metal leads. Understanding how mechanical tuning in such molecular junctions can change heat conductance has interesting applications in nanoscale energy transport. In this work, we use nonequilibrium molecular dynamics simulations to address the effect of stretching on the phononic contribution to the heat conduction of molecular junctions consisting of single long-chain alkanes and various metal leads, such as Ag, Au, Cu, Ni, and Pt. The thermal conductance of such junctions is found to be much smaller than the intrinsic thermal conductance of the polymer and significantly depends on the nature of metal leads as expressed by the metal–molecule coupling and metal vibrational density of states. This behavior is expected and reflects the mismatch of phonon spectra at the metal molecule interfaces. As a function of stretching, we find a behavior similar to what was observed earlier [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)] for pure polymeric structures. At relatively short electrode distances, where the polyethylene chains are compressed, it is found that the thermal conductances of the molecular junctions remain almost constant as one stretches the polymer chains. At critical electrode distances, the thermal conductances start to increase, reaching the values of the fully extended molecular junctions. Similar behaviors are observed for junctions in which several long-chain alkanes are sandwiched between various metal leads. These findings indicate that this behavior under stretching is an intrinsic property of the polymer chain and not significantly associated with the interfacial structures.
- Award ID(s):
- 2025013
- PAR ID:
- 10387262
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 157
- Issue:
- 17
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 174105
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reverse nonequilibrium molecular dynamics simulations were used to study heat transport in solvated gold interfaces which have been functionalized with a low-molecular weight thiolated polyethylene glycol (PEG). The gold interfaces studied included (111), (110), and (100) facets as well as spherical nanoparticles with radii of 10 and 20 Å. The embedded atom model (EAM) and the polarizable density-readjusted embedded atom model (DR-EAM) were implemented to determine the effect of metal polarizability on heat transport properties. We find that the interfacial thermal conductance values for thiolated PEG-capped interfaces are higher than those for pristine gold interfaces. Hydrogen bonding between the thiolated PEG and solvent differs between planar facets and the nanospheres, suggesting one mechanism for enhanced transfer of energy, while the covalent gold sulfur bond appears to create the largest barrier to thermal conduction. Through analysis of vibrational power spectra, we find an enhanced population at low-frequency heat-carrying modes for the nanospheres, which may also explain the higher mean interfacial thermal conductance (G) value.more » « less
-
NA (Ed.)Gold-dithiol molecular junctions have been studied both experimentally and theoretically. However, the nature of the gold-thiolate bond as it relates to the solvent has been seldom investigated. It is known that solvents can impact the electronic structure of single molecule junctions, but the correlation between the solvent and dithiol-linked single-molecule junction conductance is not well understood. We study molecular junctions formed with thiol terminated phenylenes from both 1-chloronaphthalene and 1-bromonaphthalene solutions. We find that the most probable conductance and the distribution of conductances are both affected by the solvent. First-principles calculations show that junction conductance depends on the binding configurations (adatom, atop, bridge) of the thiolate on the Au surface as has been shown previously. More importantly, we find that brominated solvents can restrict the binding of thiols to specific Au sites. This mechanism offers new insight into the effects of the solvent environment on covalent bonding in molecular junctions.more » « less
-
We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations. We first characterize an imidazole-gold contact by measuring the conductance of imidazolyl-terminated alkanes ( im-N-im , N = 3–6). We show that the conductance of these alkanes decays exponentially with increasing length, indicating that the mechanism for electron transport is through tunneling or super-exchange. We also reveal that π–π stacked dimers can be formed between imidazoles and have better coupling than through-bond tunneling. These experimental results are rationalized by calculations of molecular junction transmission using non-equilibrium Green's function formalism. This study verifies the capability of imidazole as a Au-binding ligand to form stable single- and π-stacked molecule junctions at room temperature.more » « less
-
Abstract Creating single‐molecule junctions with a long‐lived lifetime at room temperature is an open challenge. Finding simple and efficient approaches to increase the durability of single‐molecule junction is also of practical value in molecular electronics. Here it is shown that a flexible gold‐coated nanopipette electrode can be utilized in scanning tunneling microscope (STM) break‐junction measurements to efficiently enhance the stability of molecular junctions by comparing with the measurements using conventional solid gold probes. The stabilizing effect of the flexible electrode displays anchor group dependence, which increases with the binding energy between the anchor group and gold. An empirical model is proposed and shows that the flexible electrode could promote stable binding geometries at the gold‐molecule interface and slow down the junction breakage caused by the external perturbations, thereby extending the junction lifetime. Finally, it is demonstrated for the first time that the internal conduit of the flexible STM tip can be utilized for the controlled molecule delivery and molecular junction formation.