skip to main content


Title: Microbial life in the nascent Chicxulub crater
Abstract The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater.  more » « less
Award ID(s):
1737199 1737351
NSF-PAR ID:
10160777
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geology
Volume:
48
Issue:
4
ISSN:
0091-7613
Page Range / eLocation ID:
328 to 332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Chicxulub crater, Mexico, is the site of the asteroid impact that led to the end-Cretaceous mass extinction. While impact events are known to be able to cause severe disruption to surface-dwelling organisms, the effects of such catastrophic perturbations on the deep biosphere are not known. Deep ocean drilling into the peak ring of the Chicxulub impact crater (IODP expedition 364) in 2016 allowed us to study the modern deep biosphere within the (a) high-porosity melt-bearing impact breccia/suevite (617-740 mbsf) emplaced within a day or so of the Cenozoic, (b) the overlying low porosity post-impact marine Cenozoic carbonates (504-617mbsf), and the impacted and fractured granitic basement (740-1334 mbsf). The microbial biomass (~10 cells/g wet weight) was highest in the upper suevite, in underlying non-granitic subvolcanic pre-impact basanite, and at the intercalation of suevite and impact melt rock. Pre-impact sterile conditions of the uplifted granitic basement rocks and mineralogical evidence of impact-induced sterilization suggest that the basement rocks have only been amenable to microbial colonization for less than 66 Myr. Enrichments at in situ 50-60 °C show the presence of heterotrophic lifestyles in the suevite and bacterial sulfate reduction extending into the top of the granitic basement. Cultivation-independent 16S diversity profiling revealed the presence of heterotrophic (fermentative) as well as autotrophic C-fixing thermophilic bacteria in the organic-rich (up to 4 wt % total organic carbon; TOC) Cenozoic sediments. The organic-lean suevite (< 0.1% TOC) showed the unique presence of sequences related to thermophilic Synechococcus (cyanobacteria) and S-oxidizing green sulfur bacteria (chlorobi), and Chloroflexi often associated with organic-poor deep-sea sediments. Alphaproteobacteria, predominated in the upper part of the granitic basement (<1000 mbsf), while putative manganeseoxidising Bacilli (Firmicutes) predominated in the melt-rich granitic basement (>1200 mbsf). Our data suggest that the catastrophe that led to the end-Cretaceous mass extinction caused geological disruption and recolonization of microbial life in the deep subsurface biosphere at the Chicxulub impact site. 
    more » « less
  2. Abstract

    An expanded sedimentary section provides an opportunity to elucidate conditions in the nascent Chicxulub crater during the hours to millennia after the Cretaceous‐Paleogene (K‐Pg) boundary impact. The sediments were deposited by tsunami followed by seiche waves as energy in the crater declined, culminating in a thin hemipelagic marlstone unit that contains atmospheric fallout. Seiche deposits are predominantly composed of calcite formed by decarbonation of the target limestone during impact followed by carbonation in the water column. Temperatures recorded by clumped isotopes of these carbonates are in excess of 70°C, with heat likely derived from the central impact melt pool. Yet, despite the turbidity and heat, waters within the nascent crater basin soon became a viable habitat for a remarkably diverse cross section of the food chain. The earliest seiche layers deposited with days or weeks of the impact contain earliest Danian nannoplankton and dinocyst survivors. The hemipelagic marlstone representing the subsequent years to a few millennia contains a nearly monogeneric calcareous dinoflagellate resting cyst assemblage suggesting deteriorating environmental conditions, with one interpretation involving low light levels in the impact aftermath. At the same horizon, microbial fossils indicate a thriving bacterial community and unique phosphatic fossils including appendages of pelagic crustaceans, coprolites and bacteria‐tunneled fish bone, suggesting that this rapid recovery of the base of the food chain may have supported the survival of larger, higher trophic‐level organisms. The extraordinarily diverse fossil assemblage indicates that the crater was a unique habitat in the immediate impact aftermath, possibly as a result of heat and nutrients supplied by hydrothermal activity.

     
    more » « less
  3. Thermal stress on the biosphere during the extreme warmth of the Paleocene-Eocene Thermal Maximum (PETM) was most severe at low latitudes, with sea surface temperatures at some localities exceeding the 35 °C at which marine organisms experience heat stress. Relatively few equivalent terrestrial sections have been identified, and the response of land plants to this extreme heat is still poorly understood. Here, we present a new PETM record from the peak ring of the Chicxulub impact crater that has been identified based on nannofossil biostratigraphy, an acme of the dinoflagellate genus Apectodinium, and a negative carbon isotope excursion. Geochemical and microfossil proxies show that the PETM is marked by elevated TEX86H-based sea surface temperatures (SSTs) averaging ~37.8 °C, an increase in terrestrial input, surface productivity, salinity stratification, and bottom water anoxia, with biomarkers for green and purple sulfur bacteria indicative of photic zone euxinia in the early part of the event. Pollen and plants spores in this core provide the first PETM floral assemblage described from México, Central America, and the northern Caribbean. The source area was a diverse coastal shrubby tropical forest, with a remarkably high abundance of fungal spores indicating humid conditions. Thus, while seafloor anoxia devastated the benthic marine biota, and dinoflagellate assemblages were heat-stressed, the terrestrial plant ecosystem thrived. 
    more » « less
  4. Johnson, Karyn N. (Ed.)
    ABSTRACT Coral reefs are possible sinks for microbes; however, the removal mechanisms at play are not well understood. Here, we characterize pelagic microbial groups at the CARMABI reef (Curaçao) and examine microbial consumption by three coral species: Madracis mirabilis , Porites astreoides , and Stephanocoenia intersepta . Flow cytometry analyses of water samples collected from a depth of 10 m identified 6 microbial groups: Prochlorococcus , three groups of Synechococcus , photosynthetic eukaryotes, and heterotrophic bacteria. Minimum growth rates (μ) for Prochlorococcus , all Synechococcus groups, and photosynthetic eukaryotes were 0.55, 0.29, and 0.45 μ day −1 , respectively, and suggest relatively high rates of productivity despite low nutrient conditions on the reef. During a series of 5-h incubations with reef corals performed just after sunset or prior to sunrise, reductions in the abundance of photosynthetic picoeukaryotes, Prochlorococcus and Synechococcus cells, were observed. Of the three Synechococcus groups, one decreased significantly during incubations with each coral and the other two only with M. mirabilis. Removal of carbon from the water column is based on coral consumption rates of phytoplankton and averaged between 138 ng h −1 and 387 ng h −1 , depending on the coral species. A lack of coral-dependent reduction in heterotrophic bacteria, differences in Synechococcus reductions, and diurnal variation in reductions of Synechococcus and Prochlorococcus , coinciding with peak cell division, point to selective feeding by corals. Our study indicates that bentho-pelagic coupling via selective grazing of microbial groups influences carbon flow and supports heterogeneity of microbial communities overlying coral reefs. IMPORTANCE We identify interactions between coral grazing behavior and the growth rates and cell abundances of pelagic microbial groups found surrounding a Caribbean reef. During incubation experiments with three reef corals, reductions in microbial cell abundance differed according to coral species and suggest specific coral or microbial mechanisms are at play. Peaks in removal rates of Prochlorococcus and Synechococcus cyanobacteria appear highest during postsunset incubations and coincide with microbial cell division. Grazing rates and effort vary across coral species and picoplankton groups, possibly influencing overall microbial composition and abundance over coral reefs. For reef corals, use of such a numerically abundant source of nutrition may be advantageous, especially under environmentally stressful conditions when symbioses with dinoflagellate algae break down. 
    more » « less
  5. null (Ed.)
    Abstract Background Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. Results Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria , the middle and lower parts by anoxygenic purple sulfur bacteria ( Chromatiales ) and green sulfur bacteria ( Chlorobiales ), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi . Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp . Conclusions The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi -affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi . The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon. 
    more » « less