Heat waves are becoming increasingly common due to climate change, making it crucial to identify and understand the capacities for insect pollinators, such as honey bees, to avoid overheating. We examined the effects of hot, dry air temperatures on the physiological and behavioral mechanisms that honey bees use to fly when carrying nectar loads, to assess how foraging is limited by overheating or desiccation. We found that flight muscle temperatures increased linearly with load mass at air temperatures of 20 or 30 °C, but, remarkably, there was no change with increasing nectar loads at an air temperature of 40 °C. Flying, nectar-loaded bees were able to avoid overheating at 40 °C by reducing their flight metabolic rates and increasing evaporative cooling. At high body temperatures, bees apparently increase flight efficiency by lowering their wingbeat frequency and increasing stroke amplitude to compensate, reducing the need for evaporative cooling. However, even with reductions in metabolic heat production, desiccation likely limits foraging at temperatures well below bees’ critical thermal maxima in hot, dry conditions. 
                        more » 
                        « less   
                    
                            
                            Kinematic flexibility allows bumblebees to increase energetic efficiency when carrying heavy loads
                        
                    
    
            Foraging bees fly with heavy loads of nectar and pollen, incurring energetic costs that are typically assumed to depend on load size. Insects can produce more force by increasing stroke amplitude and/or flapping frequency, but the kinematic response of a given species is thought to be consistent. We examined bumblebees ( Bombus impatiens ) carrying both light and heavy loads and found that stroke amplitude increased in proportion to load size, but did not predict metabolic rate. Rather, metabolic rate was strongly tied to frequency, which was determined not by load size but by the bee’s average loading state and loading history, with heavily loaded bees displaying smaller changes in frequency and smaller increases in metabolic rate to support additional loading. This implies that bees can increase force production through alternative mechanisms; yet, they often choose the energetically costly option of elevating frequency, suggesting associated performance benefits that merit further investigation. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10161010
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 6
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaay3115
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Synopsis Understanding the effect of body size on flight costs is critical for the development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (>100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of 13 stingless bee species over a large range of body sizes (1–115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes, while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have a greater relative forewing surface area, which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at ∼58 mg body mass with hypermetic scaling below (slope = 1.2) and hypometric scaling (slope = 0.67) >58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.more » « less
- 
            Maximum vertical force production (Fvert) is an integral measure of flight performance that generally scales with size. Numerous methods of measuring Fvert and body size are accessible to entomologists, but we do not know whether method selection affects inter- and intraspecific comparisons of Fvert-size scaling. We compared two common techniques for measuring Fvert in bumblebees (Bombus impatiens) and mason bees (Osmia lignaria), and examined Fvert scaling using five size metrics. Fvert results were similar with incremental or asymptotic load-lifting, but scaling analyses were sensitive to the size metric used. Analyses based on some size metrics indicated similar scaling exponents and coefficients between species, whereas other metrics indicated coefficients that differed by up to 18%. Furthermore, Fvert showed isometry with body lengths and fed and starved masses, but negative allometry with dry mass. We conclude that Fvert can be measured using either incremental or asymptotic loading but choosing a size metric for scaling studies requires careful consideration.more » « less
- 
            null (Ed.)Abstract Background Asymmetric gait post-stroke is associated with decreased mobility, yet individuals with chronic stroke often self-select an asymmetric gait despite being capable of walking more symmetrically. The purpose of this study was to test whether self-selected asymmetry could be explained by energy cost minimization. We hypothesized that short-term deviations from self-selected asymmetry would result in increased metabolic energy consumption, despite being associated with long-term rehabilitation benefits. Other studies have found no difference in metabolic rate across different levels of enforced asymmetry among individuals with chronic stroke, but used methods that left some uncertainty to be resolved. Methods In this study, ten individuals with chronic stroke walked on a treadmill at participant-specific speeds while voluntarily altering step length asymmetry. We included only participants with clinically relevant self-selected asymmetry who were able to significantly alter asymmetry using visual biofeedback. Conditions included targeting zero asymmetry, self-selected asymmetry, and double the self-selected asymmetry. Participants were trained with the biofeedback system in one session, and data were collected in three subsequent sessions with repeated measures. Self-selected asymmetry was consistent across sessions. A similar protocol was conducted among unimpaired participants. Results Participants with chronic stroke substantially altered step length asymmetry using biofeedback, but this did not affect metabolic rate (ANOVA, p = 0.68). In unimpaired participants, self-selected step length asymmetry was close to zero and corresponded to the lowest metabolic energy cost (ANOVA, p = 6e-4). While the symmetry of unimpaired gait may be the result of energy cost minimization, self-selected step length asymmetry in individuals with chronic stroke cannot be explained by a similar least-effort drive. Conclusions Interventions that encourage changes in step length asymmetry by manipulating metabolic energy consumption may be effective because these therapies would not have to overcome a metabolic penalty for altering asymmetry.more » « less
- 
            Abstract The patterns and drivers of pollen transport on insect bodies can have important consequences for plant reproductive success and floral evolution; however, they remain little studied. Recently, pollinator bodies have been further described as pollen competitive arenas, where pollen grains can compete for space, with implications for the evolution of pollen dispersal strategies and plant community assembly. However, the identity, strength, and diversity of pollen competitive interactions and how they vary across pollinator functional groups is not known. Evaluating patterns and drivers of the pollen co‐transport landscape and how these vary across different pollinator groups is central to further our understanding of floral evolution and co‐flowering community assembly.Here, we integrate information on the number and identity of pollen grains on individual insect pollen loads with network analyses to uncover novel pollen co‐transport networks and how these vary across pollinator functional groups (bees and bee flies). We further evaluate differences in pollen load size, species composition, diversity and phylogenetic diversity among insect groups and how these relate to body size and gender.Pollen co‐transport networks were diverse and highly modular in bees, with groups of pollen species interacting more often with each other on insect bodies. However, the number, identity and frequency of competitors that pollen grains encounter on insect bodies vary between some pollinator functional groups. Other aspects of pollen loads such as their size, richness and phylogenetical diversity were shaped by bee size or gender, with females carrying larger but less phylogenetically diverse pollen loads than males.Synthesis. Our results show that the number, identity and phylogenetic relatedness of pollen competitors changes as pollen grains travel on the body of different pollinators. As a result, pollinator groups impose vastly different interaction landscapes during pollen transport, with so far unknown consequences for plant reproductive success, floral evolution and community assembly.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    