Rideshare and ride-pooling platforms use artificial intelligence-based matching algorithms to pair riders and drivers. However, these platforms can induce unfairness either through an unequal income distribution or disparate treatment of riders. We investigate two methods to reduce forms of inequality in ride-pooling platforms: by incorporating fairness constraints into the objective function and redistributing income to drivers who deserve more. To test these out, we use New York City taxi data to evaluate their performance on both the rider and driver side. For the first method, we find that optimizing for driver fairness out-performs state-of-the-art models in terms of the number of riders serviced, showing that optimizing for fairness can assist profitability in certain circumstances. For the second method, we explore income redistribution as a method to combat income inequality by having drivers keep an $$r$$ fraction of their income, and contribute the rest to a redistribution pool. For certain values of $$r$$, most drivers earn near their Shapley value, while still incentivizing drivers to maximize income, thereby avoiding the free-rider problem and reducing income variability. While the first method is useful because it improves both rider and driver-side fairness, the second method is useful because it improves fairness without affecting profitability, and both methods can be combined to improve rider and driver-side fairness. 
                        more » 
                        « less   
                    
                            
                            Improving Rider Safety Using QR Code & Fingerprint Biometrics
                        
                    
    
            Transport Network companies (TNCs) have changed the way we travel in the last five years where a rider can book a ride using her smartphone. However, TNC doesn't provide any robust mechanism to validate the driver or the rider before the ride. This has led to many violent incidents ranging from assault, kidnap of the riders by fake ride-hailing drivers. The most recent one that shook the entire nation is the murder of a USC student when the rider got into the wrong car thinking that it is her Uber [1]. To address this problem, we have proposed a solution that adds an extra security layer in authenticating both rider and driver before initiating a ride. In this solution, both rider and driver will authenticate themselves using technologies like QR Code and fingerprint biometrics supported by modern smartphones before they take the ride. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10161193
- Date Published:
- Journal Name:
- 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
- Page Range / eLocation ID:
- 0141 to 0144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Several scientific studies have reported the existence of the income gap among rideshare drivers based on demographic factors such as gender, age, race, etc. In this paper, we study the income inequality among rideshare drivers due to discriminative cancellations from riders, and the tradeoff between the income inequality (called fairness objective) with the system efficiency (called profit objective). We proposed an online bipartite-matching model where riders are assumed to arrive sequentially following a distribution known in advance. The highlight of our model is the concept of acceptance rate between any pair of driver-rider types, where types are defined based on demographic factors. Specially, we assume each rider can accept or cancel the driver assigned to her, each occurs with a certain probability which reflects the acceptance degree from the rider type towards the driver type. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous online competitive ratio analysis is offered to demonstrate the flexibility and efficiency of our online algorithms in balancing the two conflicting goals, promotions of fairness and profit. Experimental results on a real-world dataset are provided as well, which confirm our theoretical predictions.more » « less
- 
            Ride-hailing marketplaces like Uber and Lyft use dynamic pricing, often called surge, to balance the supply of available drivers with the demand for rides. We study driver-side payment mechanisms for such marketplaces, presenting the theoretical foundation that has informed the design of Uber’s new additive driver surge mechanism. We present a dynamic stochastic model to capture the impact of surge pricing on driver earnings and their strategies to maximize such earnings. In this setting, some time periods (surge) are more valuable than others (nonsurge), and therefore trips of different time lengths vary in the induced driver opportunity cost. First, we show that multiplicative surge, historically the standard on ride-hailing platforms, is not incentive compatible in a dynamic setting. We then propose a structured, incentive-compatible pricing mechanism. This closed-form mechanism has a simple form and is well approximated by Uber’s new additive surge mechanism. Finally, through both numerical analysis and real data from a ride-hailing marketplace, we show that additive surge is more incentive compatible in practice than is multiplicative surge. This paper was accepted by David Simchi-Levi, revenue management and market analytics.more » « less
- 
            Electrifying the ride-hailing services has the potential to significantly reduce greenhouse gas emissions in the shared mobility sector. However, these emission reduction benefits depend on the utilization of EVs to serve trip requests, especially during the fleet electrification process. In this paper, we evaluated the performance and emission impacts of ride-hailing service with three dispatching policies and various EV penetration levels in the ride-hailing fleet. A large-scale simulation platform was developed for the city of San Francisco in SUMO to enable the application of ride-hailing, electric vehicle charging, and idle vehicle repositioning. Simulation results indicate that with a 60% EVs in the simulated fleet, the off-peak EV priority policy and off-peak EV only policy can reduce CO2 emissions by 32% - 40% while preserving the mobility performance in terms of deadheading, total travel distance, and average rider pick-up time. It is important for ride-hailing platforms to increase the zero-emission rides and encourage ride pooling to comply with California’s Clean Miles Standard.more » « less
- 
            Abstract This article formulates and solves a stochastic optimization model to investigate the impact of crowdsourced platforms (e.g., ridesharing, on‐demand delivery, volunteer food rescue, and carpooling) offering small, personalized menus of requests and incentive offers for drivers to choose from. To circumvent nonlinear variable relationships, we exploit model structure to formulate the program as a stochastic linear integer program. The proposed solution approach models stochastic responses as a sample of variable and fixed scenarios, and to counterbalance solution overfitting, uses a participation ratio parameter. The problem is also decomposed and iterated among two separate subproblems, one which optimizes menus, and another, which optimizes incentives. Computational experiments, based on a ride sharing application using occasional drivers demonstrate the importance of using multiple scenarios to capture stochastic driver behavior. Our method provides robust performance even when discrepancies between predicted and observed driver behaviors exist. Computational results show that offering menus and personalized incentives can significantly increase match rates and platform profit compared to recommending a single request to each driver. Further, compared to the menu‐only model, the average driver income is increased, and more customer requests are matched. By strategically using personalized incentives to prioritize promising matches and to increase drivers' willingness to accept requests, our approach benefits both drivers and customers. Higher incentives are offered when drivers are more likely to accept, while fewer incentives and menu slots are reserved for driver‐request pairs less likely to be accepted.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    