skip to main content


Title: Trade the System Efficiency for the Income Equality of Drivers in Rideshare

Several scientific studies have reported the existence of the income gap among rideshare drivers based on demographic factors such as gender, age, race, etc. In this paper, we study the income inequality among rideshare drivers due to discriminative cancellations from riders, and the tradeoff between the income inequality (called fairness objective) with the system efficiency (called profit objective). We proposed an online bipartite-matching model where riders are assumed to arrive sequentially following a distribution known in advance. The highlight of our model is the concept of acceptance rate between any pair of driver-rider types, where types are defined based on demographic factors. Specially, we assume each rider can accept or cancel the driver assigned to her, each occurs with a certain probability which reflects the acceptance degree from the rider type towards the driver type. We construct a bi-objective linear program as a valid benchmark and propose two LP-based parameterized online algorithms. Rigorous online competitive ratio analysis is offered to demonstrate the flexibility and efficiency of our online algorithms in balancing the two conflicting goals, promotions of fairness and profit. Experimental results on a real-world dataset are provided as well, which confirm our theoretical predictions.

 
more » « less
Award ID(s):
1948157
NSF-PAR ID:
10244734
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Twenty-Ninth International Joint Conference on Artificial Intelligence
Page Range / eLocation ID:
4199 to 4205
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rideshare and ride-pooling platforms use artificial intelligence-based matching algorithms to pair riders and drivers. However, these platforms can induce unfairness either through an unequal income distribution or disparate treatment of riders. We investigate two methods to reduce forms of inequality in ride-pooling platforms: by incorporating fairness constraints into the objective function and redistributing income to drivers who deserve more. To test these out, we use New York City taxi data to evaluate their performance on both the rider and driver side. For the first method, we find that optimizing for driver fairness out-performs state-of-the-art models in terms of the number of riders serviced, showing that optimizing for fairness can assist profitability in certain circumstances. For the second method, we explore income redistribution as a method to combat income inequality by having drivers keep an $r$ fraction of their income, and contribute the rest to a redistribution pool. For certain values of $r$, most drivers earn near their Shapley value, while still incentivizing drivers to maximize income, thereby avoiding the free-rider problem and reducing income variability. While the first method is useful because it improves both rider and driver-side fairness, the second method is useful because it improves fairness without affecting profitability, and both methods can be combined to improve rider and driver-side fairness.

     
    more » « less
  2. Matching markets with historical data are abundant in many applications, e.g., matching candidates to jobs in hiring, workers to tasks in crowdsourcing markets, and jobs to servers in cloud services. In all these applications, a match consumes one or more shared and limited resources and the goal is to best utilize these to maximize a global objective. Additionally, one often has historical data and hence some statistics (usually first-order moments) of the arriving agents (e.g., candidates, workers, and jobs) can be learnt. To model these scenarios, we propose a unifying framework, called Multi- Budgeted Online Assignment with Known Adversarial Distributions. In this model,we have a set of offline servers with different deadlines and a set of online job types. At each time, a job of type j arrives. Assigning this job to a server i yields a profit w(i, j) while consuming a(i,j) -- a vector lying in [0, 1]^K -- quantities of distinct resources. The goal is to design an (online) assignment policy that maximizes the total expected profit without violating the (hard) budget constraint. We propose and theoretically analyze two linear programming (LP) based algorithms which are almost optimal among all LP-based approaches. We also propose several heuristics adapted from our algorithms and compare them to other LP-agnostic algorithms using both synthetic as well as real-time cloud scheduling and public safety datasets. Experimental results show that our proposed algorithms are effective and significantly out-perform the baselines. Moreover, we show empirically the trade-off between fairness and efficiency of our algorithms which does well even on fairness metrics without explicitly optimizing for it. 
    more » « less
  3. Large-scale policing data is vital for detecting inequity in police behavior and policing algorithms. However, one important type of policing data remains largely unavailable within the United States: aggregated police deployment data capturing which neighborhoods have the heaviest police presences. Here we show that disparities in police deployment levels can be quantified by detecting police vehicles in dashcam images of public street scenes. Using a dataset of 24,803,854 dashcam images from rideshare drivers in New York City, we find that police vehicles can be detected with high accuracy (average precision 0.82, AUC 0.99) and identify 233,596 images which contain police vehicles. There is substantial inequality across neighborhoods in police vehicle deployment levels. The neighborhood with the highest deployment levels has almost 20 times higher levels than the neighborhood with the lowest. Two strikingly different types of areas experience high police vehicle deployments — 1) dense, higher-income, commercial areas and 2) lower-income neighborhoods with higher proportions of Black and Hispanic residents. We discuss the implications of these disparities for policing equity and for algorithms trained on policing data. 
    more » « less
  4. This paper proposes a novel quantity-based demand management system that aims to promote ridesharing. The system sells a time-dependent permit to access a road facility (conceptualized as a bottleneck) by auction but encourages commuters to share permits with each other. The commuters may be assigned one of three roles: solo driver, ridesharing driver, or rider. At the core of this auction-based permit allocation and sharing system (A-PASS) is a trilateral matching problem (TMP) that matches permits, drivers, and riders. Formulated as an integer program, TMP is first shown to be tightly bounded by its linear relaxation. A pricing policy based on the classical Vickrey–Clarke–Groves (VCG) mechanism is then devised to determine the payment of each commuter. We prove that, under the VCG policy, different commuters pay exactly the same price as long as their role and access time are the same. Importantly, by controlling the number of shared rides, any deficit that may arise from the VCG policy can be eliminated. This may be achieved with a relatively small loss to system efficiency, thanks to the revenue generated from selling permits. Results of a numerical experiment suggest A-PASS strongly promotes ridesharing. As sharing increases, all stakeholders are better off: the ridesharing platform receives greater profits, the commuters enjoy higher utility, and society benefits from more efficient utilization of the road infrastructure. 
    more » « less
  5. This paper studies how to integrate rider mode preferences into the design of on-demand multimodal transit systems (ODMTSs). It is motivated by a common worry in transit agencies that an ODMTS may be poorly designed if the latent demand, that is, new riders adopting the system, is not captured. This paper proposes a bilevel optimization model to address this challenge, in which the leader problem determines the ODMTS design, and the follower problems identify the most cost efficient and convenient route for riders under the chosen design. The leader model contains a choice model for every potential rider that determines whether the rider adopts the ODMTS given her proposed route. To solve the bilevel optimization model, the paper proposes an exact decomposition method that includes Benders optimal cuts and no-good cuts to ensure the consistency of the rider choices in the leader and follower problems. Moreover, to improve computational efficiency, the paper proposes upper and lower bounds on trip durations for the follower problems, valid inequalities that strengthen the no-good cuts, and approaches to reduce the problem size with problem-specific preprocessing techniques. The proposed method is validated using an extensive computational study on a real data set from the Ann Arbor Area Transportation Authority, the transit agency for the broader Ann Arbor and Ypsilanti region in Michigan. The study considers the impact of a number of factors, including the price of on-demand shuttles, the number of hubs, and access to transit systems criteria. The designed ODMTSs feature high adoption rates and significantly shorter trip durations compared with the existing transit system and highlight the benefits of ensuring access for low-income riders. Finally, the computational study demonstrates the efficiency of the decomposition method for the case study and the benefits of computational enhancements that improve the baseline method by several orders of magnitude. Funding: This research was partly supported by National Science Foundation [Leap HI Proposal NSF-1854684] and the Department of Energy [Research Award 7F-30154]. 
    more » « less