skip to main content


Title: FINE DELIGNE–LUSZTIG VARIETIES AND ARITHMETIC FUNDAMENTAL LEMMAS
We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the minuscule case, without assumptions on the residual characteristic.  more » « less
Award ID(s):
1802269 1802292
NSF-PAR ID:
10161208
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
7
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove a 1979 conjecture of Lusztig on the cohomology of semi-infinite Deligne–Lusztig varieties attached to division algebras over local fields. We also prove the two conjectures of Boyarchenko on these varieties. It is known that in this setting, the semi-infinite Deligne–Lusztig varieties are ind-schemes comprised of limits of certain finite-type schemes X h {X_{h}} . Boyarchenko’s two conjectures are on the maximality of X h {X_{h}} and on the behavior of the torus-eigenspaces of their cohomology. Both of these conjectures were known in full generality only for division algebras with Hasse invariant 1 / n {1/n} in the case h = 2 {h=2} (the “lowest level”) by the work of Boyarchenko–Weinstein on the cohomology of a special affinoid in the Lubin–Tate tower. We prove that the number of rational points of X h {X_{h}} attains its Weil–Deligne bound, so that the cohomology of X h {X_{h}} is pure in a very strong sense. We prove that the torus-eigenspaces of the cohomology group H c i ⁢ ( X h ) {H_{c}^{i}(X_{h})} are irreducible representations and are supported in exactly one cohomological degree. Finally, we give a complete description of the homology groups of the semi-infinite Deligne–Lusztig varieties attached to any division algebra, thus giving a geometric realization of a large class of supercuspidal representations of these groups. Moreover, the correspondence θ ↦ H c i ⁢ ( X h ) ⁢ [ θ ] {\theta\mapsto H_{c}^{i}(X_{h})[\theta]} agrees with local Langlands and Jacquet–Langlands correspondences. The techniques developed in this paper should be useful in studying these constructions for p -adic groups in general. 
    more » « less
  2. We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $p$ . This is a generalization to $\text{GL}_{3}$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $n$ -dimensional Galois representations’, Duke Math. J.   149 (1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math.   212 (1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $\text{GL}_{3}(\mathbb{F}_{q})$ . 
    more » « less
  3. null (Ed.)
    In this paper, we extend Deligne’s functorial Riemann-Roch isomorphism for Hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily unitary connections. The Quillen metric and ?-product of Gillet-Soulé are replaced with complex valued logarithms. On the determinant of cohomology side, we show that the Cappell-Miller torsion is the appropriate counterpart of the Quillen metric. On the Deligne pairing side, the logarithm is a refinement of the intersection connections considered in a previous work. The construction naturally leads to an Arakelov theory for flat line bundles on arithmetic surfaces and produces arithmetic intersection numbers valued in C/πi Z. In this context we prove an arithmetic Riemann-Roch theorem. This realizes a program proposed by Cappell-Miller to show that their holomorphic torsion exhibits properties similar to those of the Quillen metric proved by Bismut, Gillet and Soulé. Finally, we give examples that clarify the kind of invariants that the formalism captures; namely, periods of differential forms. 
    more » « less
  4. Abstract

    We show that an orthogonal root number of a temperedL-parameter $$\varphi $$φdecomposes as the product of two other numbers: the orthogonal root number of the principal parameter and the value on a central involution of Langlands’s central character for $$\varphi $$φ. The formula resolves a conjecture of Gross and Reeder and computes root numbers of Weil–Deligne representations arising in a conjectural description of the Plancherel measure.

     
    more » « less
  5. This paper introduces arithmetic sketching, an abstraction of a primitive that several previous works use to achieve lightweight, low-communication zero-knowledge verification of secret-shared vectors. An arithmetic sketching scheme for a language L ⊆ F^n consists of (1) a randomized linear function compressing a long input x to a short “sketch,” and (2) a small arithmetic circuit that accepts the sketch if and only if x ∈ L, up to some small error. If the language L has an arithmetic sketching scheme with short sketches, then it is possible to test membership in L using an arithmetic circuit with few multiplication gates. Since multiplications are the dominant cost in protocols for computation on secret-shared, encrypted, and committed data, arithmetic sketching schemes give rise to lightweight protocols in each of these settings. Beyond the formalization of arithmetic sketching, our contributions are: – A general framework for constructing arithmetic sketching schemes from algebraic varieties. This framework unifies schemes from prior work and gives rise to schemes for useful new languages and with improved soundness error. – The first arithmetic sketching schemes for languages of sparse vectors: vectors with bounded Hamming weight, bounded L1 norm, and vectors whose few non-zero values satisfy a given predicate. – A method for “compiling” any arithmetic sketching scheme for a language L into a low-communication malicious-secure multi-server protocol for securely testing that a client-provided secret-shared vector is in L. We also prove the first nontrivial lower bounds showing limits on the sketch size for certain languages (e.g., vectors of Hamming-weight one) and proving the non-existence of arithmetic sketching schemes for others (e.g., the language of all vectors that contain a specific value). 
    more » « less