skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On-the-fly surface manufacturability constraints for freeform optical design enabled by orthogonal polynomials
When leveraging orthogonal polynomials for describing freeform optics, designers typically focus on the computational efficiency of convergence and the optical performance of the resulting designs. However, to physically realize these designs, the freeform surfaces need to be fabricated and tested. An optimization constraint is described that allows on-the-fly calculation and constraint of manufacturability estimates for freeform surfaces, namely peakto- valley sag departure and maximum gradient normal departure. This constraint’s construction is demonstrated in general for orthogonal polynomials, and in particular for both Zernike polynomials and Forbes 2D-Q polynomials. Lastly, this optimization constraint’s impact during design is shown via two design studies: a redesign of a published unobscured three-mirror telescope in the ball geometry for use in LWIR imaging and a freeform prism combiner for use in AR/VR applications. It is shown that using the optimization penalty with a fixed number of coefficients enables an improvement in manufacturability in exchange for a tradeoff in optical performance. It is further shown that, when the number of coefficients is increased in conjunction with the optimization penalty, manufacturability estimates can be improved without sacrificing optical performance. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement  more » « less
Award ID(s):
1822049 1338877
PAR ID:
10161237
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Optics express
Volume:
27
Issue:
5
ISSN:
1094-4087
Page Range / eLocation ID:
6129-6146
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Driven by the development of freeform imaging systems, we have combined several concepts and techniques from the literature to analytically generate unobscured freeform starting point designs that are corrected through the third-order image degrading aberrations. The surfaces used in these starting point designs are described as a base off-axis conic that images stigmatically for the central field point, also known as a Cartesian reflector, with an aspheric departure “cap” (quartic with the aperture) added to the base off-axis conic to correct for the third-order image degrading aberrations. Once the aspheric caps are added to the surfaces, the system is then optimized using higher order freeform terms while leaving second-order terms frozen to preserve the focal length of the system during optimization. This technique is used to survey the three-mirror freeform imager solution space. Several systems that are the result of this technique are shown, with different numbers of internal images, internal pupil conjugates and folding geometries. 
    more » « less
  2. The invention of new design techniques for unobscured reflective systems using freeform surfaces has expanded the optical design space for these system types. We illustrate how the use of freeform surfaces can expand the design space of the Three Mirror Compact design type to allow both better performance at a given system volume and smaller volumes for a given performance target. By evolving designs using conventional off-axis asphere type surfaces to ever smaller volumes and then converting these off-axis asphere descriptions to centered Zernike descriptions, we show that the wavefront error improves by up to 69% in this case by allowing the surfaces to break rotational symmetry. In addition, we show that evolving designs from the same starting point as the off-axis asphere designs but instead using a centered Zernike description can produce a design with a 39% smaller volume in this case while maintaining the same diffraction-limited performance. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
    more » « less
  3. Reimaging telescopes have an accessible exit pupil that facilitates stray light mitigation and matching to auxiliary optical systems. Freeform surfaces present the opportunity for unobscured reflective systems to be folded into geometries that are otherwise impracticable with conventional surface types. It is critical, however, to understand the limitations of the enabled folding geometries and choose the one that best balances the optical performance and mechanical requirements. Here, we used the aberration theory of freeform surfaces to determine the aberration correction potential for using freeform surfaces in reimaging three-mirror telescopes and established a hierarchy for the different folding geometries without using optimization. We found that when using freeform optics, the ideal folding geometry had 9× better wavefront performance compared to the next best geometry. Within that ideal geometry, the system using freeform optics had 39% better wavefront performance compared to a system using off-axis asphere surfaces, thus quantifying one of the advantages of freeform optics in this design space. 
    more » « less
  4. An approach to designing multiconfiguration afocal telescopes is developed and demonstrated. Freeform surfaces are used to maximize the achievable diffraction-limited zoom ratio while staying in a compact volume for a two-position multiconfiguration afocal optical system. The limitations of these systems with three-mirror beam paths are discussed and subsequently overcome by introducing an additional degree of freedom. In a four-mirror beam path system, the goal of a 5x zoom ratio is achieved with a compensated exit pupil and diffraction-limited performance. A significant benefit in optical performance when using freeform surfaces is shown compared to more conventional surface types. 
    more » « less
  5. Hahlweg, Cornelius F.; Mulley, Joseph R. (Ed.)
    Increasing depth of field in imaging systems can be beneficial, particularly for systems with high numerical apertures and short depth of field, such as microscopy. Extending depth of field has been previously demonstrated, for example, using non-rotationally symmetric (freeform) components such as cubic and logarithmic phase plates. Such fixed phase plates are generally designed for a specific optical system, so a different phase plate is required for each system. Methods that enable variable extended depth of field for multiple optical systems could provide benefits by reducing the number of required components and costs. In this paper, we explore the design of a single pair of transmissive freeform surfaces to enable extended depth of field for multiple lenses with different numerical apertures through relative translation of the freeform components. This work builds on the concept of an Alvarez lens, in which one pair of transmissive XY-polynomial freeform surfaces generates variable optical power through lateral relative shifts between the surfaces. The presented approach is based on the design of multiple fixed phase plates to optimize the through-focus Modulation Transfer Function (MTF) for imaging lenses of given numerical apertures. The freeform surface equation for the desired variable phase plate pair is then derived and the relative shift amounts between the freeform surfaces are calculated to enable extended depth of field for multiple imaging lenses with different numerical aperture values. Design approaches and simulation results will be discussed. © (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. Citation Download Citation Sara Moein and Thomas J. Suleski "Variable extended depth of field imaging using freeform optics", Proc. SPIE 11483, Novel Optical Systems, Methods, and Applications XXIII, 114830G (21 August 2020); https://doi.org/10.1117/12.2568723 
    more » « less