skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of reflectors for illumination via conformal maps
We present an approach for the study and design of reflectors with rotational or translational symmetry that redirect light from a point source into any desired radiant intensity distribution. This method is based on a simple conformal map that transforms the reflector’s shape into a curve that describes light’s direction after reflection. Both segmented reflectors and continuous reflectors are discussed, illustrating how certain reflector characteristics become apparent under this transformation. This method can also be used to study extended sources via translations. © 2019 Optical Society of America https://doi.org/10.1364/OL.44.003809  more » « less
Award ID(s):
1822049 1338877
PAR ID:
10161243
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Optics letters
Volume:
44
Issue:
15
ISSN:
0146-9592
Page Range / eLocation ID:
3809-3812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large deployable mesh reflectors play a critical role in satellite communications, Earth observation, and deep-space exploration, offering high-gain antenna performance through precisely shaped reflective surfaces. Traditional dynamic modeling approaches—such as wave-based and finite element methods—often struggle to accurately capture the complex behavior of three-dimensional reflectors due to oversimplifications of cable members. To address these challenges, this paper proposes a novel spatial discretization framework that systematically decomposes cable member displacements into boundary-induced and internal components in a global Cartesian coordinate system. The framework derives a system of ordinary differential equations for each cable member by enforcing the Lagrange’s equations, capturing both longitudinal and transverse internal displacement of the cable member. Numerical simulations of a two-dimensional cable-network structure and a center-feed parabolic deployable mesh reflector with 101 nodes illustrate the improved accuracy of the proposed method in predicting vibration characteristics across a broad frequency range. Compared to standard finite element analysis, the proposed method more effectively identifies both low- and high-frequency modes and offers robust convergence and accurate prediction for both frequency and transient responses of the structure. This enhanced predictive capability underscores the significance of incorporating internal cable member displacements for reliable dynamic modeling of large deployable mesh reflectors, ultimately informing better design, control, and on-orbit performance of future space-based reflector systems. 
    more » « less
  2. Large deployable mesh reflectors are crucial in space applications due to their lightweight and efficient storage characteristics. However, achieving high surface accuracy and managing the significant thermal effects experienced during on-orbit operations remain challenges in deployable mesh reflector design. This paper presents an innovative dynamic thermal modeling methodology for large deployable mesh reflectors, effectively addressing these obstacles. The proposed method considers a comprehensive set of radiation factors including solar, Earth, Albedo, and reflector emissions. This allows for a detailed analysis of dynamic thermal behavior of the reflector, thereby accurately capturing the impact of thermal strains of cable members on surface accuracy. Simulations of a 101-node center-feed parabolic reflecting surface of a deployable mesh reflector indicate that the proposed method can reveal non-uniform temperature distributions, unlike traditional methods that presuppose uniformity. Additionally, the proposed method has proven effective in accurately predicting the root-mean-square error increase of the reflector, typically unobserved in traditional thermal modeling techniques. 
    more » « less
  3. With significant commercial potentials, millimeter- wave (mmWave) based wireless local area networks (WLANs) have attracted intensive attention lately. Unfortunately, the susceptible transmission characteristics over mmWave bands, especially the vulnerability to blockages, poses significant design challenges. Although existing solutions, such as beamforming, can overcome some of the problems, they usually focus on enhancing end transceivers to adapt to the transmission environments, and sometimes are still less effective. In this paper, by deploying highly-reflective cheap metallic plates as tunable reflectors without damaging the aesthetic nature of the environments, we propose to augment WLAN transmission environments in a way to create more effective alternative indirect line-of-sight (LOS) links by adjusting the orientations of the reflectors. Based on this idea, we design a novel adaptive mechanism, called mmRef, to effectively tune the angels of the deployed reflectors and develop corresponding operational procedures. Our performance study demonstrates our proposed scheme could achieve significant gain by tuning the angles of deployed reflectors in the augmented transmission environment. 
    more » « less
  4. Hydrogenation is a widely used method to improve performance of electronic devices made from silicon but much less frequently to improve corresponding optical properties. Here, we study the possible use of hydrogenation to reduce inherent optical loss in silicon. We address enablement of efficient resonance metastructures such as filters, wideband reflectors, and polarizers via successful outcomes of such experimentation. A noticeable reduction in attenuation is observed. 
    more » « less
  5. Abstract All radar power interpretations require a correction for attenuative losses. Moreover, radar attenuation is a proxy for ice-column properties, such as temperature and chemistry. Prior studies use either paired thermodynamic and conductivity models or the radar data themselves to calculate attenuation, but there is no standard method to do so; and, before now, there has been no robust methodological comparison. Here, we develop a framework meant to guide the implementation of empirical attenuation methods based on survey design and regional glaciological conditions. We divide the methods into the three main groups: (1) those that infer attenuation from a single reflector across many traces; (2) those that infer attenuation from multiple reflectors within one trace; and (3) those that infer attenuation by contrasting the measured power from primary and secondary reflections. To assess our framework, we introduce a new ground-based radar survey from South Pole Lake, comparing selected empirical methods to the expected attenuation from a temperature- and chemistry-dependent Arrhenius model. Based on the small surveyed area, lack of a sufficient calibration surface and low reflector relief, the attenuation methods that use multiple reflectors are most suitable at South Pole Lake. 
    more » « less