skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-assembly of reversed bilayer vesicles through pnictogen bonding: water-stable supramolecular nanocontainers for organic solvents
A new air and moisture stable antimony thiolate compound has been prepared that spontaneously forms stable hollow vesicles. Structural data reveals that pnictogen bonding drives the self-assembly of these molecules into a reversed bilayer. The ability to make these hollow, spherical, and chemically and temporally stable vesicles that can be broken and reformed by sonication allows these systems to be used for encapsulation and compartmentalisation in organic media. This was demonstrated through the encapsulation and characterization of several small organic reporter molecules.  more » « less
Award ID(s):
1849063 1847878
PAR ID:
10161308
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
11
Issue:
17
ISSN:
2041-6520
Page Range / eLocation ID:
4374 to 4380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dumbbell- and bola-shaped amphiphiles are commonly expected to self-assemble into vesicles with condensed hydrophobic domains due to the dominant hydrophobic interaction. In this work, we examined the assemblies of the dumbbell-shaped AC60-AC60 amphiphile, with two carboxylic acid-functionalized fullerenes (AC60) polar head groups linked by an organic tether, and found that they assemble into hollow, spherical blackberry-type structures with porous surfaces, judged by their smaller assemblies in organic solvents with higher polarity and in aqueous solutions with high pH. We attribute the formation of blackberry structures to the organic tether that may be too short to fill up a condensed hydrophobic domain, as confirmed by all-atom simulations. This is further proved by noticing that several bola-type macromolecules with hydrophilic polyethylene glycol (PEG) chain being the linker and no hydrophobic components, AC60-PEG-AC60, can also self-assemble into hollow, spherical assemblies and demonstrate similar pH response as the assemblies from AC60-AC60 dumbbells. Therefore, we conclude that the driving force of the self-assembly for these dumbbell- or bola-shaped molecules is counterion-mediated attraction from the two AC60 head groups rather than the hydrophobic interaction due to the organic linkers. The so-formed blackberry structures here, as well-studied before in other systems, possess porous surfaces, making these charged amphiphiles a valuable model for designing stable nanocontainers with controllable porosity to the change of environment. 
    more » « less
  2. Abstract Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer. 
    more » « less
  3. Abstract Small, spherical vesicles are a widely used chassis for the formation of model protocells and investigating the beginning of compartmentalized evolution. Various methods exist for their preparation, with one of the most common approaches being gentle hydration, where thin layers of lipids are hydrated with aqueous solutions and gently agitated to form vesicles. An important benefit to gentle hydration is that the method produces vesicles without introducing any organic contaminants, such as mineral oil, into the lipid bilayer. However, compared to other methods of liposome formation, gentle hydration is much less efficient at encapsulating aqueous cargo. Improving the encapsulation efficiency of gentle hydration would be of broad use for medicine, biotechnology, and protocell research. Here, we describe a method of sequentially hydrating lipid thin films to increase encapsulation efficiency. We demonstrate that sequential gentle hydration significantly improves encapsulation of water-soluble cargo compared to the traditional method, and that this improved efficiency is dependent on buffer composition. Similarly, we also demonstrate how this method can be used to increase concentrations of oleic acid, a fatty acid commonly used in origins of life research, to improve the formation of vesicles in aqueous buffer. 
    more » « less
  4. Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases. 
    more » « less
  5. null (Ed.)
    Creating a suitable compartment for synthetic cells has led the exploration of different cell chassis materials from phospholipids to polymer to protein-polymer conjugates. Currently, the majority of cell-like compartments are made of lipid molecules as the resulting membrane resembles that of a natural cell. However, cell-sized lipid vesicles are prone to physical and chemical stresses and can be unstable in hosting biochemical reactions within. Recently, peptide vesicles that are more robust and stable were developed as a new chassis material for synthetic cells. Here we demonstrate the facile and robust generation of giant peptide vesicles made of elastin-like polypeptides (ELPs) by using an emulsion transfer method. We show that these peptide vesicles can stably encapsulate molecules and can host cell-free expression reactions. We also demonstrate membrane incorporation of another amphiphilic ELP into existing peptide vesicles. Since ELPs are genetically encoded, the approaches presented here provide exciting opportunities to engineer synthetic cell membranes. 
    more » « less