skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sharp bounds on the relative treatment effect for ordinal outcomes
Abstract For ordinal outcomes, the average treatment effect is often ill‐defined and hard to interpret. Echoing Agresti and Kateri, we argue that the relative treatment effect can be a useful measure, especially for ordinal outcomes, which is defined as , with and being the potential outcomes of unit under treatment and control, respectively. Given the marginal distributions of the potential outcomes, we derive the sharp bounds on which are identifiable parameters based on the observed data. Agresti and Kateri focused on modeling strategies under the assumption of independent potential outcomes, but we allow for arbitrary dependence.  more » « less
Award ID(s):
1713152
PAR ID:
10161349
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
76
Issue:
2
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 664-669
Size(s):
p. 664-669
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Although the existing causal inference literature focuses on the forward-looking perspective by estimating effects of causes, the backward-looking perspective can provide insights into causes of effects. In backward-looking causal inference, the probability of necessity measures the probability that a certain event is caused by the treatment given the observed treatment and outcome. Most existing results focus on binary outcomes. Motivated by applications with ordinal outcomes, we propose a general definition of the probability of necessity. However, identifying the probability of necessity is challenging because it involves the joint distribution of the potential outcomes. We propose a novel assumption of monotonic incremental treatment effect to identify the probability of necessity with ordinal outcomes. We also discuss the testable implications of this key identification assumption. When it fails, we derive explicit formulas of the sharp large-sample bounds on the probability of necessity. 
    more » « less
  2. Summary In some randomized clinical trials, patients may die before the measurement time point of their outcomes. Even though randomization generates comparable treatment and control groups, the remaining survivors often differ significantly in background variables that are prognostic to the outcomes. This is called the truncation by death problem. Under the potential outcomes framework, the only well-defined causal effect on the outcome is within the subgroup of patients who would always survive under both treatment and control. Because the definition of the subgroup depends on the potential values of the survival status that could not be observed jointly, without making strong parametric assumptions, we cannot identify the causal effect of interest and consequently can only obtain bounds of it. Unfortunately, however, many bounds are too wide to be useful. We propose to use detailed survival information before and after the measurement time point of the outcomes to sharpen the bounds of the subgroup causal effect. Because survival times contain useful information about the final outcome, carefully utilizing them could improve statistical inference without imposing strong parametric assumptions. Moreover, we propose to use a copula model to relax the commonly-invoked but often doubtful monotonicity assumption that the treatment extends the survival time for all patients. 
    more » « less
  3. Summary Precision medicine is an emerging scientific topic for disease treatment and prevention that takes into account individual patient characteristics. It is an important direction for clinical research, and many statistical methods have been proposed recently. One of the primary goals of precision medicine is to obtain an optimal individual treatment rule (ITR), which can help make decisions on treatment selection according to each patient's specific characteristics. Recently, outcome weighted learning (OWL) has been proposed to estimate such an optimal ITR in a binary treatment setting by maximizing the expected clinical outcome. However, for ordinal treatment settings, such as individualized dose finding, it is unclear how to use OWL. In this article, we propose a new technique for estimating ITR with ordinal treatments. In particular, we propose a data duplication technique with a piecewise convex loss function. We establish Fisher consistency for the resulting estimated ITR under certain conditions, and obtain the convergence and risk bound properties. Simulated examples and an application to a dataset from a type 2 diabetes mellitus observational study demonstrate the highly competitive performance of the proposed method compared to existing alternatives. 
    more » « less
  4. Abstract Evaluating treatment effect heterogeneity widely informs treatment decision making. At the moment, much emphasis is placed on the estimation of the conditional average treatment effect via flexible machine learning algorithms. While these methods enjoy some theoretical appeal in terms of consistency and convergence rates, they generally perform poorly in terms of uncertainty quantification. This is troubling since assessing risk is crucial for reliable decision-making in sensitive and uncertain environments. In this work, we propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects under the potential outcome framework. For completely randomized or stratified randomized experiments with perfect compliance, the intervals have guaranteed average coverage in finite samples regardless of the unknown data generating mechanism. For randomized experiments with ignorable compliance and general observational studies obeying the strong ignorability assumption, the intervals satisfy a doubly robust property which states the following: the average coverage is approximately controlled if either the propensity score or the conditional quantiles of potential outcomes can be estimated accurately. Numerical studies on both synthetic and real data sets empirically demonstrate that existing methods suffer from a significant coverage deficit even in simple models. In contrast, our methods achieve the desired coverage with reasonably short intervals. 
    more » « less
  5. ABSTRACT Longitudinal studies are often subject to missing data. The recent guidance from regulatory agencies, such as the ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classical control-based scenario for the treatment effect evaluation, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves n1/2-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than n−1/4 when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial. 
    more » « less