skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Idempotents in Tangle Categories Split
In this paper, we use 3-manifold techniques to illuminate the structure of the category of tangles. In particular, we show that every idempotent morphism [Formula: see text] in such a category naturally splits as [Formula: see text] such that [Formula: see text] is an identity morphism.  more » « less
Award ID(s):
1821254
PAR ID:
10161374
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Knot Theory and Its Ramifications
Volume:
28
Issue:
05
ISSN:
0218-2165
Page Range / eLocation ID:
1950025
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories [Formula: see text] with the fusion rules of [Formula: see text] we determine the finite group [Formula: see text] for which [Formula: see text] is braided equivalent to [Formula: see text]. In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point. 
    more » « less
  2. For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics. 
    more » « less
  3. We consider how the outputs of the Kadison transitivity theorem and Gelfand–Naimark–Segal (GNS) construction may be obtained in families when the initial data are varied. More precisely, for the Kadison transitivity theorem, we prove that for any nonzero irreducible representation [Formula: see text] of a [Formula: see text]-algebra [Formula: see text] and [Formula: see text], there exists a continuous function [Formula: see text] such that [Formula: see text] for all [Formula: see text], where [Formula: see text] is the set of pairs of [Formula: see text]-tuples [Formula: see text] such that the components of [Formula: see text] are linearly independent. Versions of this result where [Formula: see text] maps into the self-adjoint or unitary elements of [Formula: see text] are also presented. Regarding the GNS construction, we prove that given a topological [Formula: see text]-algebra fiber bundle [Formula: see text], one may construct a topological fiber bundle [Formula: see text] whose fiber over [Formula: see text] is the space of pure states of [Formula: see text] (with the norm topology), as well as bundles [Formula: see text] and [Formula: see text] whose fibers [Formula: see text] and [Formula: see text] over [Formula: see text] are the GNS Hilbert space and closed left ideal, respectively, corresponding to [Formula: see text]. When [Formula: see text] is a smooth fiber bundle, we show that [Formula: see text] and [Formula: see text] are also smooth fiber bundles; this involves proving that the group of ∗-automorphisms of a [Formula: see text]-algebra is a Banach Lie group. In service of these results, we review the topology and geometry of the pure state space. A simple non-interacting quantum spin system is provided as an example illustrating the physical meaning of some of these results. 
    more » « less
  4. null (Ed.)
    Assume [Formula: see text]. Let [Formula: see text] be a [Formula: see text] equivalence relation coded in [Formula: see text]. [Formula: see text] has an ordinal definable equivalence class without any ordinal definable elements if and only if [Formula: see text] is unpinned. [Formula: see text] proves [Formula: see text]-class section uniformization when [Formula: see text] is a [Formula: see text] equivalence relation on [Formula: see text] which is pinned in every transitive model of [Formula: see text] containing the real which codes [Formula: see text]: Suppose [Formula: see text] is a relation on [Formula: see text] such that each section [Formula: see text] is an [Formula: see text]-class, then there is a function [Formula: see text] such that for all [Formula: see text], [Formula: see text]. [Formula: see text] proves that [Formula: see text] is Jónsson whenever [Formula: see text] is an ordinal: For every function [Formula: see text], there is an [Formula: see text] with [Formula: see text] in bijection with [Formula: see text] and [Formula: see text]. 
    more » « less
  5. In [M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand and I. Runkel, 3-dimensional TQFTs from non-semisimple modular categories, preprint (2019), arXiv:1912.02063[math.GT]], we constructed 3-dimensional topological quantum field theories (TQFTs) using not necessarily semisimple modular categories. Here, we study projective representations of mapping class groups of surfaces defined by these TQFTs, and we express the action of a set of generators through the algebraic data of the underlying modular category [Formula: see text]. This allows us to prove that the projective representations induced from the non-semisimple TQFTs of the above reference are equivalent to those obtained by Lyubashenko via generators and relations in [V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172(3) (1995) 467–516, arXiv:hep-th/9405167]. Finally, we show that, when [Formula: see text] is the category of finite-dimensional representations of the small quantum group of [Formula: see text], the action of all Dehn twists for surfaces without marked points has infinite order. 
    more » « less