Abstract We develop the categorical context for defining Hermitian non‐semisimple topological quantum field theories (TQFTs). We prove that relative Hermitian modular categories give rise to modified Hermitian Witten–Reshetikhin–Turaev TQFTs and provide numerous examples of these structures coming from the representation theory of quantum groups and quantum superalgebras. The Hermitian theory developed here for the modified Turaev–Viro TQFT is applied to define new pseudo‐Hermitian topological phases that can be considered as non‐semisimple analogs of Levin–Wen models.
more »
« less
Mapping class group representations from non-semisimple TQFTs
In [M. De Renzi, A. Gainutdinov, N. Geer, B. Patureau-Mirand and I. Runkel, 3-dimensional TQFTs from non-semisimple modular categories, preprint (2019), arXiv:1912.02063[math.GT]], we constructed 3-dimensional topological quantum field theories (TQFTs) using not necessarily semisimple modular categories. Here, we study projective representations of mapping class groups of surfaces defined by these TQFTs, and we express the action of a set of generators through the algebraic data of the underlying modular category [Formula: see text]. This allows us to prove that the projective representations induced from the non-semisimple TQFTs of the above reference are equivalent to those obtained by Lyubashenko via generators and relations in [V. Lyubashenko, Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Comm. Math. Phys. 172(3) (1995) 467–516, arXiv:hep-th/9405167]. Finally, we show that, when [Formula: see text] is the category of finite-dimensional representations of the small quantum group of [Formula: see text], the action of all Dehn twists for surfaces without marked points has infinite order.
more »
« less
- Award ID(s):
- 2104497
- PAR ID:
- 10528749
- Publisher / Repository:
- World Sci. Publ.
- Date Published:
- Journal Name:
- Communications in Contemporary Mathematics
- Volume:
- 25
- Issue:
- 01
- ISSN:
- 0219-1997
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A braided fusion category is said to have Property F if the associated braid group representations factor through a finite group. We verify integral metaplectic modular categories have property F by showing these categories are group-theoretical. For the special case of integral categories [Formula: see text] with the fusion rules of [Formula: see text] we determine the finite group [Formula: see text] for which [Formula: see text] is braided equivalent to [Formula: see text]. In addition, we determine the associated classical link invariant, an evaluation of the 2-variable Kauffman polynomial at a point.more » « less
-
null (Ed.)The Thurston norm of a three-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of three-manifolds [Formula: see text] with [Formula: see text], and whose fundamental groups admit presentations with two generators and one relator. We show that even among this special class, there are three-manifolds such that the unit ball of the Thurston norm has arbitrarily many faces.more » « less
-
Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers.more » « less
-
We introduce an unrolled quantization U_q^E(gl(1,1)) of the complex Lie superalgebra gl(1,1) and use its categories of weight modules to construct and study new three dimensional non-semisimple topological quantum field theories. These theories are defined on categories of cobordisms which are decorated by ribbon graphs and cohomology classes and take values in categories of graded super vector spaces. Computations in these theories are enabled by a detailed study of the representation theory of U_q^E(gl(1,1)). We argue that by restricting to subcategories of integral weight modules we obtain topological quantum field theories which are mathematical models of Chern--Simons theories with gauge supergroups psl(1,1,) and U(1,1) coupled to background flat \mathbb{C}^{\times}-connections, as studied in the physics literature by Rozansky--Saleur and Mikhaylov. In particular, we match Verlinde formulae and mapping class group actions on state spaces of non-generic tori with results in the physics literature. We also obtain explicit descriptions of state spaces of generic surfaces, including their graded dimensions, which go beyond results in the physics literature.more » « less
An official website of the United States government

