skip to main content


Title: Bayes-SAR Net: Robust SAR Image Classification with Uncertainty Estimation Using Bayesian Convolutional Neural Network
Synthetic aperture radar (SAR) image classification is a challenging problem due to the complex imaging mechanism as well as the random speckle noise, which affects radar image interpretation. Recently, convolutional neural networks (CNNs) have been shown to outperform previous state-of-the-art techniques in computer vision tasks owing to their ability to learn relevant features from the data. However, CNNs in particular and neural networks, in general, lack uncertainty quantification and can be easily deceived by adversarial attacks. This paper proposes Bayes-SAR Net, a Bayesian CNN that can perform robust SAR image classification while quantifying the uncertainty or confidence of the network in its decision. Bayes-SAR Net propagates the first two moments (mean and covariance) of the approximate posterior distribution of the network parameters given the data and obtains a predictive mean and covariance of the classification output. Experiments, using the benchmark datasets Flevoland and Oberpfaffenhofen, show superior performance and robustness to Gaussian noise and adversarial attacks, as compared to the SAR-Net homologue. Bayes-SAR Net achieves a test accuracy that is around 10% higher in the case of adversarial perturbation (levels > 0.05).  more » « less
Award ID(s):
1903466
NSF-PAR ID:
10161388
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Radar Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have surpassed human-level accuracy in various learning tasks. However, unlike humans who have a natural cognitive intuition for probabilities, DNNs cannot express their uncertainty in the output decisions. This limits the deployment of DNNs in mission critical domains, such as warfighter decision-making or medical diagnosis. Bayesian inference provides a principled approach to reason about model’s uncertainty by estimating the posterior distribution of the unknown parameters. The challenge in DNNs remains the multi-layer stages of non-linearities, which make the propagation of high-dimensional distributions mathematically intractable. This paper establishes the theoretical and algorithmic foundations of uncertainty or belief propagation by developing new deep learning models named PremiUm-CNNs (Propagating Uncertainty in Convolutional Neural Networks). We introduce a tensor normal distribution as a prior over convolutional kernels and estimate the variational posterior by maximizing the evidence lower bound (ELBO). We start by deriving the first-order mean-covariance propagation framework. Later, we develop a framework based on the unscented transformation (correct at least up to the second-order) that propagates sigma points of the variational distribution through layers of a CNN. The propagated covariance of the predictive distribution captures uncertainty in the output decision. Comprehensive experiments conducted on diverse benchmark datasets demonstrate: 1) superior robustness against noise and adversarial attacks, 2) self-assessment through predictive uncertainty that increases quickly with increasing levels of noise or attacks, and 3) an ability to detect a targeted attack from ambient noise. 
    more » « less
  2. Model confidence or uncertainty is critical in autonomous systems as they directly tie to the safety and trustworthiness of the system. The quantification of uncertainty in the output decisions of deep neural networks (DNNs) is a challenging problem. The Bayesian framework enables the estimation of the predictive uncertainty by introducing probability distributions over the (unknown) network weights; however, the propagation of these high-dimensional distributions through multiple layers and non-linear transformations is mathematically intractable. In this work, we propose an extended variational inference (eVI) framework for convolutional neural network (CNN) based on tensor Normal distributions (TNDs) defined over convolutional kernels. Our proposed eVI framework propagates the first two moments (mean and covariance) of these TNDs through all layers of the CNN. We employ first-order Taylor series linearization to approximate the mean and covariances passing through the non-linear activations. The uncertainty in the output decision is given by the propagated covariance of the predictive distribution. Furthermore, we show, through extensive simulations on the MNIST and CIFAR-10 datasets, that the CNN becomes more robust to Gaussian noise and adversarial attacks. 
    more » « less
  3. Traditionally, a high-performance microscope with a large numerical aperture is required to acquire high-resolution images. However, the images’ size is typically tremendous. Therefore, they are not conveniently managed and transferred across a computer network or stored in a limited computer storage system. As a result, image compression is commonly used to reduce image size resulting in poor image resolution. Here, we demonstrate custom convolution neural networks (CNNs) for both super-resolution image enhancement from low-resolution images and characterization of both cells and nuclei from hematoxylin and eosin (H&E) stained breast cancer histopathological images by using a combination of generator and discriminator networks so-called super-resolution generative adversarial network-based on aggregated residual transformation (SRGAN-ResNeXt) to facilitate cancer diagnosis in low resource settings. The results provide high enhancement in image quality where the peak signal-to-noise ratio and structural similarity of our network results are over 30 dB and 0.93, respectively. The derived performance is superior to the results obtained from both the bicubic interpolation and the well-known SRGAN deep-learning methods. In addition, another custom CNN is used to perform image segmentation from the generated high-resolution breast cancer images derived with our model with an average Intersection over Union of 0.869 and an average dice similarity coefficient of 0.893 for the H&E image segmentation results. Finally, we propose the jointly trained SRGAN-ResNeXt and Inception U-net Models, which applied the weights from the individually trained SRGAN-ResNeXt and inception U-net models as the pre-trained weights for transfer learning. The jointly trained model’s results are progressively improved and promising. We anticipate these custom CNNs can help resolve the inaccessibility of advanced microscopes or whole slide imaging (WSI) systems to acquire high-resolution images from low-performance microscopes located in remote-constraint settings. 
    more » « less
  4. null (Ed.)
    This paper presents a novel framework for training convolutional neural networks (CNNs) to quantify the impact of gradual and abrupt uncertainties in the form of adversarial attacks. Uncertainty quantification is achieved by combining the CNN with a Gaussian process (GP) classifier algorithm. The variance of the GP quantifies the impact on the uncertainties and especially their effect on the object classification tasks. Learning from uncertainty provides the proposed CNN-GP framework with flexibility, reliability and robustness to adversarial attacks. The proposed approach includes training the network under noisy conditions. This is accomplished by comparing predictions with classification labels via the Kullback-Leibler divergence, Wasserstein distance and maximum correntropy. The network performance is tested on the classical MNIST, Fashion-MNIST, CIFAR10 and CIFAR 100 datasets. Further tests on robustness to both black-box and white-box attacks are also carried out for MNIST. The results show that the testing accuracy improves for networks that backpropogate uncertainty as compared to methods that do not quantify the impact of uncertainties. A comparison with a state-of-art Monte Carlo dropout method is also presented and the outperformance of the CNN-GP framework with respect to reliability and computational efficiency is demonstrated. 
    more » « less
  5. Due to the growing volume of remote sensing data and the low latency required for safe marine navigation, machine learning (ML) algorithms are being developed to accelerate sea ice chart generation, currently a manual interpretation task. However, the low signal-to-noise ratio of the freely available Sentinel-1 Synthetic Aperture Radar (SAR) imagery, the ambiguity of backscatter signals for ice types, and the scarcity of open-source high-resolution labelled data makes automating sea ice mapping challenging. We use Extreme Earth version 2, a high-resolution benchmark dataset generated for ML training and evaluation, to investigate the effectiveness of ML for automated sea ice mapping. Our customized pipeline combines ResNets and Atrous Spatial Pyramid Pooling for SAR image segmentation. We investigate the performance of our model for: i) binary classification of sea ice and open water in a segmentation framework; and ii) a multiclass segmentation of five sea ice types. For binary ice-water classification, models trained with our largest training set have weighted F1 scores all greater than 0.95 for January and July test scenes. Specifically, the median weighted F1 score was 0.98, indicating high performance for both months. By comparison, a competitive baseline U-Net has a weighted average F1 score of ranging from 0.92 to 0.94 (median 0.93) for July, and 0.97 to 0.98 (median 0.97) for January. Multiclass ice type classification is more challenging, and even though our models achieve 2% improvement in weighted F1 average compared to the baseline U-Net, test weighted F1 is generally between 0.6 and 0.80. Our approach can efficiently segment full SAR scenes in one run, is faster than the baseline U-Net, retains spatial resolution and dimension, and is more robust against noise compared to approaches that rely on patch classification. 
    more » « less