skip to main content

Title: Extended Variational Inference for Propagating Uncertainty in Convolutional Neural Networks
Model confidence or uncertainty is critical in autonomous systems as they directly tie to the safety and trustworthiness of the system. The quantification of uncertainty in the output decisions of deep neural networks (DNNs) is a challenging problem. The Bayesian framework enables the estimation of the predictive uncertainty by introducing probability distributions over the (unknown) network weights; however, the propagation of these high-dimensional distributions through multiple layers and non-linear transformations is mathematically intractable. In this work, we propose an extended variational inference (eVI) framework for convolutional neural network (CNN) based on tensor Normal distributions (TNDs) defined over convolutional kernels. Our proposed eVI framework propagates the first two moments (mean and covariance) of these TNDs through all layers of the CNN. We employ first-order Taylor series linearization to approximate the mean and covariances passing through the non-linear activations. The uncertainty in the output decision is given by the propagated covariance of the predictive distribution. Furthermore, we show, through extensive simulations on the MNIST and CIFAR-10 datasets, that the CNN becomes more robust to Gaussian noise and adversarial attacks.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE 29th International Workshop on Machine Learning for Signal Processing
Page Range / eLocation ID:
1 to 6
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Deep neural networks (DNNs) have surpassed human-level accuracy in various learning tasks. However, unlike humans who have a natural cognitive intuition for probabilities, DNNs cannot express their uncertainty in the output decisions. This limits the deployment of DNNs in mission critical domains, such as warfighter decision-making or medical diagnosis. Bayesian inference provides a principled approach to reason about model’s uncertainty by estimating the posterior distribution of the unknown parameters. The challenge in DNNs remains the multi-layer stages of non-linearities, which make the propagation of high-dimensional distributions mathematically intractable. This paper establishes the theoretical and algorithmic foundations of uncertainty or belief propagation by developing new deep learning models named PremiUm-CNNs (Propagating Uncertainty in Convolutional Neural Networks). We introduce a tensor normal distribution as a prior over convolutional kernels and estimate the variational posterior by maximizing the evidence lower bound (ELBO). We start by deriving the first-order mean-covariance propagation framework. Later, we develop a framework based on the unscented transformation (correct at least up to the second-order) that propagates sigma points of the variational distribution through layers of a CNN. The propagated covariance of the predictive distribution captures uncertainty in the output decision. Comprehensive experiments conducted on diverse benchmark datasets demonstrate: 1) superior robustness against noise and adversarial attacks, 2) self-assessment through predictive uncertainty that increases quickly with increasing levels of noise or attacks, and 3) an ability to detect a targeted attack from ambient noise. 
    more » « less
  2. Synthetic aperture radar (SAR) image classification is a challenging problem due to the complex imaging mechanism as well as the random speckle noise, which affects radar image interpretation. Recently, convolutional neural networks (CNNs) have been shown to outperform previous state-of-the-art techniques in computer vision tasks owing to their ability to learn relevant features from the data. However, CNNs in particular and neural networks, in general, lack uncertainty quantification and can be easily deceived by adversarial attacks. This paper proposes Bayes-SAR Net, a Bayesian CNN that can perform robust SAR image classification while quantifying the uncertainty or confidence of the network in its decision. Bayes-SAR Net propagates the first two moments (mean and covariance) of the approximate posterior distribution of the network parameters given the data and obtains a predictive mean and covariance of the classification output. Experiments, using the benchmark datasets Flevoland and Oberpfaffenhofen, show superior performance and robustness to Gaussian noise and adversarial attacks, as compared to the SAR-Net homologue. Bayes-SAR Net achieves a test accuracy that is around 10% higher in the case of adversarial perturbation (levels > 0.05). 
    more » « less
  3. The remarkable success of the Transformer model in Natural Language Processing (NLP) is increasingly capturing the attention of vision researchers in contemporary times. The Vision Transformer (ViT) model effectively models long-range dependencies while utilizing a self-attention mechanism by converting image information into meaningful representations. Moreover, the parallelism property of ViT ensures better scalability and model generalization compared to Recurrent Neural Networks (RNN). However, developing robust ViT models for high-risk vision applications, such as self-driving cars, is critical. Deterministic ViT models are susceptible to noise and adversarial attacks and incapable of yielding a level of confidence in output predictions. Quantifying the confidence (or uncertainty) level in the decision is highly important in such real-world applications. In this work, we introduce a probabilistic framework for ViT to quantify the level of uncertainty in the model's decision. We approximate the posterior distribution of network parameters using variational inference. While progressing through non-linear layers, the first-order Taylor approximation was deployed. The developed framework propagates the mean and covariance of the posterior distribution through layers of the probabilistic ViT model and quantifies uncertainty at the output predictions. Quantifying uncertainty aids in providing warning signals to real-world applications in case of noisy situations. Experimental results from extensive simulation conducted on numerous benchmark datasets (e.g., MNIST and Fashion-MNIST) for image classification tasks exhibit 1) higher accuracy of proposed probabilistic ViT under noise or adversarial attacks compared to the deterministic ViT. 2) Self-evaluation through uncertainty becomes notably pronounced as noise levels escalate. Simulations were conducted at the Texas Advanced Computing Center (TACC) on the Lonestar6 supercomputer node. With the help of this vital resource, we completed all the experiments within a reasonable period. 
    more » « less
  4. Deep neural network (DNN) models have achieved state‐of‐the‐art predictive accuracy in a wide range of applications. However, it remains a challenging task to accurately quantify the uncertainty in DNN predictions, especially those of continuous outcomes. To this end, we propose the Bayesian deep noise neural network (B‐DeepNoise), which generalizes standard Bayesian DNNs by extending the random noise variable from the output layer to all hidden layers. Our model is capable of approximating highly complex predictive density functions and fully learn the possible random variation in the outcome variables. For posterior computation, we provide a closed‐form Gibbs sampling algorithm that circumvents tuning‐intensive Metropolis–Hastings methods. We establish a recursive representation of the predictive density and perform theoretical analysis on the predictive variance. Through extensive experiments, we demonstrate the superiority of B‐DeepNoise over existing methods in terms of density estimation and uncertainty quantification accuracy. A neuroimaging application is included to show our model's usefulness in scientific studies.

    more » « less
  5. Abstract

    Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with which the ML models were trained. For complex systems, re-training is only possible if the changes are slow relative to the rate at which large numbers of new input-output training data can be non-invasively recorded. In this work, we present an approach to deep learning for time-varying systems that does not require re-training, but uses instead an adaptive feedback in the architecture of deep convolutional neural networks (CNN). The feedback is based only on available system output measurements and is applied in the encoded low-dimensional dense layers of the encoder-decoder CNNs. First, we develop an inverse model of a complex accelerator system to map output beam measurements to input beam distributions, while both the accelerator components and the unknown input beam distribution vary rapidly with time. We then demonstrate our method on experimental measurements of the input and output beam distributions of the HiRES ultra-fast electron diffraction (UED) beam line at Lawrence Berkeley National Laboratory, and showcase its ability for automatic tracking of the time varying photocathode quantum efficiency map. Our method can be successfully used to aid both physics and ML-based surrogate online models to provide non-invasive beam diagnostics.

    more » « less