skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities
The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of ‘beyond Li’ battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg–Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination.  more » « less
Award ID(s):
1809866
PAR ID:
10161617
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Horizons
Volume:
7
Issue:
3
ISSN:
2051-6347
Page Range / eLocation ID:
843 to 854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a new computational framework of neuron growth based on the phase field method and develop an open-source software package called “NeuronGrowth_IGAcollocation”. Neurons consist of a cell body, dendrites, and axons. Axons and dendrites are long processes extending from the cell body and enabling information transfer to and from other neurons. There is high variation in neuron morphology based on their location and function, thus increasing the complexity in mathematical modeling of neuron growth. In this paper, we propose a novel phase field model with isogeometric collocation to simulate different stages of neuron growth by considering the effect of tubulin. The stages modeled include lamellipodia formation, initial neurite outgrowth, axon differentiation, and dendrite formation considering the effect of intracellular transport of tubulin on neurite outgrowth. Through comparison with experimental observations, we can demonstrate qualitatively and quantitatively similar reproduction of neuron morphologies at different stages of growth and allow extension towards the formation of neurite networks. 
    more » « less
  2. Lithium metal batteries (LMBs) are considered one of the most promising next-generation rechargeable batteries due to their high specific capacity. However, severe dendrite growth and subsequent formation of dead lithium (Li) during the battery cycling process impede its practical application. Although extensive experimental studies have been conducted to investigate the cycling process, and several theoretical models were developed to simulate the Li dendrite growth, there are limited theoretical studies on the dead Li formation, as well as the entire cycling process. Herein, we developed a phase-field model to simulate both electroplating and stripping process in a bare Li anode and Li anode covered with a protective layer. A step function is introduced in the stripping model to capture the dynamics of dead Li. Our simulation clearly shows the growth of dendrites from a bare Li anode during charging. These dendrites detach from the bulk anode during discharging, forming dead Li. Dendrite growth becomes more severe in subsequent cycles due to enhanced surface roughness of the Li anode, resulting in an increasing amount of dead Li. In addition, it is revealed that dendrites with smaller base diameters detach faster at the base and produce more dead lithium. Meanwhile, the Li anode covered with a protective layer cycles smoothly without forming Li dendrite and dead Li. However, if the protective layer is fractured, Li metal preferentially grows into the crack due to enhanced Li-ion (Li+) flux and forms a dendrite structure after penetration through the protective layer, which accelerates the dead Li formation in the subsequent stripping process. Our work thus provides a fundamental understanding of the mechanism of dead Li formation during the charging/discharging process and sheds light on the importance of the protective layer in the prevention of dead Li in LMBs. 
    more » « less
  3. Lithium (Li) metal anodes have regained intensive interest in recent years due to the ever-increasing demand for next-generation high energy battery technologies. Li metal, unfortunately, suffers from poor cycling stability and low efficiency as well as from the formation of dangerous Li dendrites, raising safety concerns. Utilizing solid-state electrolytes (SSEs) to prevent Li dendrite growth provides a promising approach to tackle the challenge. However, recent studies indicate that Li dendrites easily form at high current densities, which calls for full investigation of the fundamental mechanisms of Li dendrite formation within SSEs. Herein, the origin and evolution of Li dendrite growth through SSEs have been studied and compared by using Li 6.1 Ga 0.3 La 3 Zr 2 O 12 (LLZO) and NASICON-type Li 2 O–Al 2 O 3 –P 2 O 5 –TiO 2 –GeO 2 (LATP) pellets as the separators. We discover that a solid electrolyte interphase (SEI)-like interfacial layer between Li and SSE plays a critical role in alleviating the growth of dendritic Li, providing new insights into the interface between SSE and Li metal to enable future all solid-state batteries. 
    more » « less
  4. Instabilities during metal electrodeposition create dendrites on the plating surfaces. In high energy density lithium metal batteries (LMBs) dendrite growth causes safety issues and accelerated aging. In this paper, analytical models predict that dendrite growth can be controlled and potentially eliminated by small advective flows normal to the surface of lithium metal electrode. Electrolyte flow towards the Li metal electrode lowers the dendrite growth rate, overpotential, and impedance. Flow in the opposite direction, however, enhances the dendrite growth. For every current density, there exists a critical velocity above which dendrite growth can be totally eliminated. The critical velocity increases almost linearly with increasing current density. For typical current densities and inter-electrode separation, the critical velocity is very small, indicating the potential for practical application. 
    more » « less
  5. Abstract High-grade ores in low-sulfidation epithermal precious metal deposits include banded quartz veins that contain gold dendrites. The processes by which dendrite growth takes place have been subject to debate for decades, especially given that these deposits are known to form from dilute thermal liquids that contain only trace amounts of gold. It is shown here that growth of gold dendrites in epithermal veins at the McLaughlin deposit in California (western USA) originally took place within bands of gel-like noncrystalline silica. The gel provided a framework for the delicate dendrites to form. The high permeability of the gel allowed the diffusion and advection of gold from the thermal liquids flowing across the top of the silica layers to the sites of crystal growth within the gel. Over time, the gel hardened to form opal-AG. This silica phase is thermodynamically unstable and recrystallized to quartz that has a distinct mosaic texture. 
    more » « less