skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trends in the Airglow Temperatures in the MLT Region—Part 1: Model Simulations
Airglow intensity-weighted temperature variations induced by the CO2 increase, solar cycle variation (F10.7 as a proxy) and geomagnetic activity (Ap index as a proxy) in the Mesosphere and Lower Thermosphere (MLT) region were simulated to quantitatively assess their influences on airglow temperatures. Two airglow models, MACD-00 and OHCD-00, were used to simulate the O(1S) greenline, O2(0,1) atmospheric band, and OH(8,3) airglow temperature variations induced by these influences to deduce the trends. Our results show that all three airglow temperatures display a linear trend of ~−0.5 K/decade, in response to the increase of CO2 gas concentration. The airglow temperatures were found to be highly correlated with Ap index, and moderately correlated with F10.7, with the OH temperature showing an anti-correlation. The F10.7 and Ap index trends were found to be ~−0.7 ± 0.28 K/100SFU and ~−0.1 ± 0.02 K/nT in the OH temperature, 4.1 ± 0.7 K/100SFU and ~0.6 ± 0.03 K/nT in the O2 temperature and ~2.0 ± 0.6 K/100SFU and ~0.4 ± 0.03 K/nT in the O1S temperature. These results indicate that geomagnetic activity can have a rather significant effect on the temperatures that had not been looked at previously.  more » « less
Award ID(s):
1903346
PAR ID:
10161650
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
5
ISSN:
2073-4433
Page Range / eLocation ID:
468
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements at low latitudes from 89 km to 97 km were used to derive the F10.7 and Ap index trends, and the trends were compared to model simulations. The annual mean nonzonal (e.g., at the model simulation location at 18° N, 290° E) SABER temperature showed a good-to-moderate correlation with F10.7, with a trend of 4.5–5.3 K/100 SFU, and a moderate-to-weak correlation with the Ap index, with a trend of 0.1–0.3 K/nT. The annual mean zonal mean SABER temperature was found to be highly correlated with the F10.7, with a similar trend, and moderately correlated with the Ap index, with a trend in a similar range. The correlation with the Ap index was significantly improved with a slightly larger trend when the zonal mean temperature was fitted with a 1-year backward shift in the Ap index. The F10.7 (Ap index) trends in the simulated O2 and the O(1S) temperature were smaller (larger) than those in the annual mean nonzonal mean SABER temperature. The trends from the simulations were better compared to those in the annual mean zonal mean temperature. The comparisons were even better when compared to the trend results obtained from fitting with a backward shift in the Ap index. 
    more » « less
  2. Ground-based temperature measurements at Svalbard, Wuppertal, and Hohenpeissenberg were analyzed to obtain F10.7, Ap index, and Dst index trends. The trends were then compared to those obtained from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature measurements at the same locations. Trend analysis was carried out for overlapped time periods, full range of available data, and the CO2-detrended full range of available data. The Svalbard meteor radar (SABER) temperature showed a weak (moderate) correlation with F10.7 and a moderate (weak) correlation with Ap and Dst indices. The trends in the Wuppertal OH* temperature compare well with the SABER temperature when a full range of data is used in the analysis. Both temperatures had a similar F10.7 trend with the same level of correlation coefficient. The F10.7 trend in the Hohenpeissenberg OH* temperature compared well with that obtained by SABER, but the former displayed a weak correlation. The Hohenpeissenberg data displayed a very weak correlation with Ap and Dst indices. Our study clearly shows that a longer dataset would better capture trends in temperature, as was evidenced by the results of Wuppertal data. The CO2-detrended temperatures overall showed slightly larger trend values with a slightly better correlation. 
    more » « less
  3. Abstract. An intriguing and rare gravity wave event was recorded on the night of 25 April 2017 using a multiwavelength all-sky airglow imager over northernGermany. The airglow imaging observations at multiple altitudes in themesosphere and lower thermosphere region reveal that a prominent upward-propagating wave structure appeared in O(1S) and O2 airglowimages. However, the same wave structure was observed to be very faint in OH airglow images, despite OH being usually one of the brightest airglowemissions. In order to investigate this rare phenomenon, the altitudeprofile of the vertical wavenumber was derived based on colocated meteorradar wind-field and SABER temperature profiles close to the event location.The results indicate the presence of a thermal duct layer in the altituderange of 85–91 km in the southwest region of Kühlungsborn, Germany.Utilizing these instrumental data sets, we present evidence to show how aleaky duct layer partially inhibited the wave progression in the OH airglowemission layer. The coincidental appearance of this duct layer is responsible for the observed faint wave front in the OH airglow images compared O(1S) and O2 airglow images during the course of the night over northern Germany. 
    more » « less
  4. Hydroxyl radical (•OH) is produced in soils from oxidation of reduced iron (Fe(II)) by dissolved oxygen (O2) and can oxidize dissolved organic carbon (DOC) to carbon dioxide (CO2). Understanding the role of •OH on CO2 production in soils requires knowing whether Fe(II) production or O2 supply to soils limits •OH production. To test the relative importance of Fe(II) production versus O2 supply, we measured changes in Fe(II) and O2 and in situ •OH production during simulated precipitation events and during common, waterlogged conditions in mesocosms from two landscape ages and the two dominant vegetation types of the Arctic. The balance of Fe(II) production and consumption controlled •OH production during precipitation events that supplied O2 to the soils. During static, waterlogged conditions, •OH production was controlled by O2 supply because Fe(II) production was higher than its consumption (oxidation) by O2. An average precipitation event (4 mm) resulted in 200 µmol •OH m−2 per day produced compared to 60 µmol •OH m−2 per day produced during waterlogged conditions. These findings suggest that the oxidation of DOC to CO2 by •OH in arctic soils, a process potentially as important as microbial respiration of DOC in arctic surface waters, will depend on the patterns and amounts of rainfall that oxygenate the soil. 
    more » « less
  5. Abstract. We compare primary productivity estimates based on different photosynthetic ‘currencies’ (electrons, O2 and carbon) collected from the dynamic coastal upwelling waters of the California Current. Fast Repetition Rate Fluorometry and O2/N2 measurements were used to collect high-resolution underway estimates of photosynthetic electron transport rates and net community productivity, respectively, alongside on-station 14C uptake experiments to measure gross carbon fixation rates. Our survey captured two upwelling filaments at Cape Blanco and Cape Mendocino with distinct biogeochemical signatures and iron availabilities, enabling us to examine photosynthetic processes along a natural iron gradient. Significant differences in photo-physiology, cell sizes, Si:NO3- draw-down ratios, and molecular markers of Fe-stress indicated that phytoplankton assemblages near Cape Mendocino were Fe-stressed, while those near Cape Blanco were Fe-replete. Upwelling of O2-poor deep water to the surface complicated O2-based net community productivity estimates, but we were able to correct for these vertical mixing effects using continuous [N2O] surface measurements and depth-profiles of ∂[O2]∂[N2O]. Vertical mixing corrections were strongly correlated to sea surface temperature, which serves as an N2O-independent proxy for upwelling. Following vertical mixing corrections, all three productivity estimates reflected trends in Fe-stress physiology, indicating greater productivity near Cape Blanco compared to Cape Mendocino. For all assemblages, carbon fixation varied as a hyperbolic function of electron transport rates, but the derived parameters of this relationship were highly variable and significantly correlated with physiological indicators of Fe-stress (σPSII, FV/FM, Si:NO3- and diatom-specific PSI gene expression), suggesting that iron availability influenced the coupling between photosynthetic electron transport and subsequent carbon fixation. Net community productivity showed strong coherence with daily-integrated photosynthetic electron transport rates across the entire cruise track, with no apparent relationship with Fe-stress. This result suggests that fluorescence-based estimates of gross photochemistry are still a good indicator for bulk primary productivity, even if Fe-limitation influences the stoichiometric relationship between productivity currencies. 
    more » « less