- PAR ID:
- 10085618
- Date Published:
- Journal Name:
- Soil Systems
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2571-8789
- Page Range / eLocation ID:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Topographic depressions in upland soils experience anaerobic conditions conducive for iron (Fe) reduction following heavy rainfall. These depressional areas can also accumulate reactive Fe compounds, carbon (C), and nitrate, creating potential hot spots of Fe-mediated carbon dioxide (CO2) and nitrous oxide (N2O) production. While there are multiple mechanisms by which Fe redox reactions can facilitate CO2 and N2O production, it is unclear what their cumulative effect is on CO2 and N2O emissions in depressional soils under dynamic redox. We hypothesized that Fe reduction and oxidation facilitate greater CO2 and N2O emissions in depressional compared to upslope soils in response to flooding. To test this, we amended upslope and depressional soils with Fe(II), Fe(III), or labile C and measured CO2 and N2O emissions in response to flooding. We found that depressional soils have greater Fe reduction potential, which can contribute to soil CO2 emissions during flooded conditions when C is not limiting. Additionally, Fe(II) addition stimulated N2O production, suggesting that chemodenitrification may be an important pathway of N2O production in depressions that accumulate Fe(II). As rainfall intensification results in more frequent flooding of depressional upland soils, Fe-mediated CO2 and N2O production may become increasingly important pathways of soil greenhouse gas emissions.more » « less
-
Abstract Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic.
-
Dissolved organic carbon (DOC) was leached from permafrost soils near the Toolik Field Station in the Alaskan Arctic, either kept in the dark or exposed to light treatments, and then incubated with native permafrost microbial communities. The radiocarbon (14C) and stable carbon (13C) isotopic compositions of the initial DOC present in the dark or light-exposed permafrost soil leachates and the carbon dioxide (CO2) produced by microbial respiration of dark or light-exposed permafrost DOC were quantified.more » « less
-
Abstract The thawing of ancient organic carbon stored in arctic permafrost soils, and its oxidation to carbon dioxide (CO2, a greenhouse gas), is predicted to amplify global warming. However, the extent to which organic carbon in thawing permafrost soils will be released as CO2is uncertain. A critical unknown is the extent to which dissolved organic carbon (DOC) from thawing permafrost soils is respired to CO2by microbes upon export of freshly thawed DOC to both dark bottom waters and sunlit surface waters. In this study, we quantified the radiocarbon age and13C composition of CO2produced by microbial respiration of DOC that was leached from permafrost soils and either kept in the dark or exposed to ultraviolet and visible wavelengths of light. We show that permafrost DOC most labile to microbial respiration was as old or older (ages 4,000–11,000 a BP) and more13C‐depleted than the bulk DOC in both dark and light‐exposed treatments, likely indicating respiration of old,13C‐depleted lignin and lipid fractions of the permafrost DOC pool. Light exposure either increased, decreased, or had no effect on the magnitude of microbial respiration of old permafrost DOC relative to respiration in the dark, depending on both the extent of DOC oxidation during exposure to light and the wavelength of light. Together, these findings suggest that photochemical changes affecting the lability of permafrost DOC during sunlight exposure are an important control on the magnitude of microbial respiration of permafrost DOC in arctic surface waters.
-
Abstract The biogeochemical fluxes that cycle oxygen (O2) play a critical role in regulating Earth’s climate and habitability. Triple-oxygen isotope (TOI) compositions of marine dissolved O2 are considered a robust tool for tracing oxygen cycling and quantifying gross photosynthetic O2 production. This method assumes that photosynthesis, microbial respiration, and gas exchange with the atmosphere are the primary influences on dissolved O2 content, and that they have predictable, fixed isotope effects. Despite its widespread use, there are major elements of this approach that remain uncharacterized, including the TOI dynamics of respiration by marine heterotrophic bacteria and abiotic O2 sinks such as the photochemical oxidation of dissolved organic carbon (DOC). Here, we report the TOI fractionation for O2 utilization by two model marine heterotrophs and by abiotic photo-oxidation of representative terrestrial and coastal marine DOC. We demonstrate that TOI slopes associated with these processes span a significant range of the mass-dependent domain (λ = 0.499 to 0.521). A sensitivity analysis reveals that even under moderate productivity and photo-oxidation scenarios, true gross oxygen production may deviate from previous estimates by more than 20% in either direction. By considering a broader suite of oxygen cycle reactions, our findings challenge current gross oxygen production estimates and highlight several paths forward to better understanding the marine oxygen and carbon cycles.