skip to main content

Title: Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices
Abstract

Assistive wearable soft robotic systems have recently made a surge in the field of biomedical robotics, as soft materials allow safe and transparent interactions between the users and devices. A recent interest in the field of soft pneumatic actuators (SPAs) has been the introduction of a new class of actuators called fabric soft pneumatic actuators (FSPAs). These actuators exploit the unique capabilities of different woven and knit textiles, including zero initial stiffness, full collapsibility, high power-to-weight ratio, puncture resistant, and high stretchability. By using 2D manufacturing methods we are able to create actuators that can extend, contract, twist, bend, and perform a combination of these motions in 3D space. This paper presents a comprehensive simulation and design tool for various types of FSPAs using finite element method (FEM) models. The FEM models are developed and experimentally validated, in order to capture the complex non-linear behavior of individual actuators optimized for free displacement and blocked force, applicable for wearable assistive tasks.

Authors:
;
Award ID(s):
1800940
Publication Date:
NSF-PAR ID:
10161792
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Publisher:
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction.
  2. Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder).
  3. Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve—the pneumatic equivalent of a Schmitt trigger—which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates—which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs—allow fabrication of digital logic circuits for a set–reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations thatmore »receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control—one not involving an electronic interface or hard components—for soft devices.

    « less
  4. Abstract

    This work reports a three-dimensional polymer interdigitated pillar electrostatic actuator that can produce force densities 5–10× higher than those of biological muscles. The theory of operation, scaling, and stability is investigated using analytical and FEM models. The actuator consists of two high-density arrays of interdigitated pillars that work against a restoring force generated by an integrated flexure spring. The actuator architecture enables linear actuation with higher displacements and pull-in free actuation to prevent the in-use stiction associated with other electrostatic actuators. The pillars and springs are 3D printed together in the same structure. The pillars are coated with a gold–palladium alloy layer to form conductive electrodes. The space between the pillars is filled with liquid dielectrics for higher breakdown voltages and larger electrostatic forces due to the increase in the dielectric constant. We demonstrated a prototype actuator that produced a maximum work density of 54.6 µJ/cc and an electrical-to-mechanical energy coupling factor of 32% when actuated at 4000 V. The device was operated for more than 100,000 cycles with no degradation in displacements. The flexible polymer body was robust, allowing the actuator to operate even after high mechanical force impact, which was demonstrated by operation after drop tests. As it ismore »scaled further, the reported actuator will enable soft and flexible muscle-like actuators that can be stacked in series and parallel to scale the resulting forces. This work paves the way for high-energy density actuators for microrobotic applications.

    « less
  5. Textile pneumatic actuators were developed to provide full assistance to lift the arm of a model of an 11-year-old male beyond 120 degrees of shoulder abduction. Two fabrics and a variety of sealing techniques, methods of attachment, and actuator shapes were comparatively evaluated using textile and functional tests. The results identified that both fabrics and one of the three sealing techniques were effective for creating air-tight, functional actuators. Actuators were more effective when the bands attaching them were closer to the axilla. Rectangular and wing-shaped actuators, both lifting the model of an 11-year-old male’s arm above 120 degrees of abduction, were more effective than Y-shaped actuators. Multiple designs and materials may be acceptable for building textile pneumatic actuators to lift the full weight of a child’s arm. Compared to traditional hard robots, soft assistive robots offer key potential benefits related to comfort, aesthetics, weight, bulk, and cost.