skip to main content


Title: Design and Computational Modeling of Fabric Soft Pneumatic Actuators for Wearable Assistive Devices
Abstract

Assistive wearable soft robotic systems have recently made a surge in the field of biomedical robotics, as soft materials allow safe and transparent interactions between the users and devices. A recent interest in the field of soft pneumatic actuators (SPAs) has been the introduction of a new class of actuators called fabric soft pneumatic actuators (FSPAs). These actuators exploit the unique capabilities of different woven and knit textiles, including zero initial stiffness, full collapsibility, high power-to-weight ratio, puncture resistant, and high stretchability. By using 2D manufacturing methods we are able to create actuators that can extend, contract, twist, bend, and perform a combination of these motions in 3D space. This paper presents a comprehensive simulation and design tool for various types of FSPAs using finite element method (FEM) models. The FEM models are developed and experimentally validated, in order to capture the complex non-linear behavior of individual actuators optimized for free displacement and blocked force, applicable for wearable assistive tasks.

 
more » « less
Award ID(s):
1800940
NSF-PAR ID:
10161792
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Textiles hold great promise as a soft yet durable material for building comfortable robotic wearables and assistive devices at low cost. Nevertheless, the development of smart wearables composed entirely of textiles has been hindered by the lack of a viable sheet-based logic architecture that can be implemented using conventional fabric materials and textile manufacturing processes. Here, we develop a fully textile platform for embedding pneumatic digital logic in wearable devices. Our logic-enabled textiles support combinational and sequential logic functions, onboard memory storage, user interaction, and direct interfacing with pneumatic actuators. In addition, they are designed to be lightweight, easily integrable into regular clothing, made using scalable fabrication techniques, and durable enough to withstand everyday use. We demonstrate a textile computer capable of input-driven digital logic for controlling untethered wearable robots that assist users with functional limitations. Our logic platform will facilitate the emergence of future wearables powered by embedded fluidic logic that fully leverage the innate advantages of their textile construction. 
    more » « less
  2. null (Ed.)
    Upper limb mobility impairments affect individuals at all life stages. Exoskeletons can assist in rehabilitation as well as performing Activities of Daily Living (ADL). Most commercial assistive devices still rely on rigid robotics with constrained biomechanical degrees of freedom that may even increase user exertion. Therefore, this paper discusses the iterative design and development of a novel hybrid pneumatic actuation and Shape Memory Alloy (SMA) based wearable soft exoskeleton to assist in shoulder abduction and horizontal flexion/extension movements, with integrated soft strain sensing to track shoulder joint motion. The garment development was done in two stages which involved creating (1) SMA actuators integrated with soft sensing, and (2) integrating pneumatic actuation. The final soft exoskeleton design was developed based on the insights gained from two prior prototypes in terms of wearability, usability, comfort, and functional specifications (i.e., placement and number) of the sensors and actuators. The final exoskeleton is a modular, multilayer garment which uses a hybrid and customizable actuation strategy (SMA and inflatable pneumatic bladder). 
    more » « less
  3. Abstract

    Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.

     
    more » « less
  4. Although soft devices (grippers, actuators, and elementary robots) are rapidly becoming an integral part of the broad field of robotics, autonomy for completely soft devices has only begun to be developed. Adaptation of conventional systems of control to soft devices requires hard valves and electronic controls. This paper describes completely soft pneumatic digital logic gates having a physical scale appropriate for use with current (macroscopic) soft actuators. Each digital logic gate utilizes a single bistable valve—the pneumatic equivalent of a Schmitt trigger—which relies on the snap-through instability of a hemispherical membrane to kink internal tubes and operates with binary high/low input and output pressures. Soft, pneumatic NOT, AND, and OR digital logic gates—which generate known pneumatic outputs as a function of one, or multiple, pneumatic inputs—allow fabrication of digital logic circuits for a set–reset latch, two-bit shift register, leading-edge detector, digital-to-analog converter (DAC), and toggle switch. The DAC and toggle switch, in turn, can control and power a soft actuator (demonstrated using a pneu-net gripper). These macroscale soft digital logic gates are scalable to high volumes of airflow, do not consume power at steady state, and can be reconfigured to achieve multiple functionalities from a single design (including configurations that receive inputs from the environment and from human users). This work represents a step toward a strategy to develop autonomous control—one not involving an electronic interface or hard components—for soft devices.

     
    more » « less
  5. null (Ed.)
    Textile pneumatic actuators were developed to provide full assistance to lift the arm of a model of an 11-year-old male beyond 120 degrees of shoulder abduction. Two fabrics and a variety of sealing techniques, methods of attachment, and actuator shapes were comparatively evaluated using textile and functional tests. The results identified that both fabrics and one of the three sealing techniques were effective for creating air-tight, functional actuators. Actuators were more effective when the bands attaching them were closer to the axilla. Rectangular and wing-shaped actuators, both lifting the model of an 11-year-old male’s arm above 120 degrees of abduction, were more effective than Y-shaped actuators. Multiple designs and materials may be acceptable for building textile pneumatic actuators to lift the full weight of a child’s arm. Compared to traditional hard robots, soft assistive robots offer key potential benefits related to comfort, aesthetics, weight, bulk, and cost. 
    more » « less