We consider the task of measuring time with probabilistic threshold gates implemented by bioinspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. We first consider a deterministic implementation of a neural timer and show that Θ(logt) (deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(loglog1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{loglog1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks. Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks.
more »
« less
Compressed Counting with Spiking Neurons (Extended Abstract)
We consider the task of measuring time with probabilistic threshold gates implemented by bioinspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.We first consider a deterministic implementation of a neural timer and show that Θ(logt)(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2 t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{log log 1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [AwerbuchPeleg, FOCS’90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time.
more »
« less
 Award ID(s):
 1810758
 NSFPAR ID:
 10161880
 Date Published:
 Journal Name:
 7th Workshop on Biological Distributed Algorithms (BDA)
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


Biological neural computation is inherently asynchronous due to large variations in neuronal spike timing and transmission delays. Sofar, most theoretical work on neural networks assumes the synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at understanding the barriers of asynchronous neural computation from an algorithmic perspective. We consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural Networks 97] to the asynchronous setting by taking into account edge and node delays.  Edge Delays: We define an asynchronous model for spiking neurons in which the latency values (i.e., transmission delays) of non selfloop edges vary adversarially over time. This extends the recent work of [Hitron and Parter, ESA'19] in which the latency values are restricted to be fixed over time. Our first contribution is an impossibility result that implies that the assumption that selfloop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly, in real biological networks selfloop edges (a.k.a. autapse) are indeed free of delays, and the latter has been noted by neuroscientists to be crucial for network synchronization. To capture the computational challenges in this setting, we first consider the implementation of a single NOT gate. This simple function already captures the fundamental difficulties in the asynchronous setting. Our key technical results are space and time upper and lower bounds for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers [Awerbuch and Peleg, FOCS'90] and following [Hitron and Parter, ESA'19], we then provide a general synchronizer machinery. Our construction is very modular and it is based on efficient circuit implementation of threshold gates. The complexity of our scheme is measured by the overhead in the number of neurons and the computation time, both are shown to be polynomial in the largest latency value, and the largest incoming degree Δ of the original network.  Node Delays: We introduce the study of asynchronous communication due to variations in the response rates of the neurons in the network. In real brain networks, the round duration varies between different neurons in the network. Our key result is a simulation methodology that allows one to transform the above mentioned synchronized solution under edge delays into a synchronized under node delays while incurring a small overhead w.r.t space and time.more » « less

Biological neural computation is inherently asynchronous due to large variations in neuronal spike timing and transmission delays. Sofar, most theoretical work on neural networks assumes the synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at understanding the barriers of asynchronous neural computation from an algorithmic perspective. We consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural= Networks 97] to the asynchronous setting by taking into account edge and node delays. Edge Delays: We define an asynchronous model for spiking neurons in which the latency values (i.e., transmission delays) of non selfloop edges vary adversarially over time. This extends the recent work of [Hitron and Parter, ESA’19] in which the latency values are restricted to be fixed over time. Our first contribution is an impossibility result that implies that the assumption that selfloop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly, in real biological networks selfloop edges (a.k.a. autapse) are indeed free of delays, and the latter has been noted by neuroscientists to be crucial for network synchronization. To capture the computational challenges in this setting, we first consider the implementation of a single NOT gate. This simple function already captures the fundamental difficulties in the asynchronous setting. Our key technical results are space and time upper and lower bounds for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers [Awerbuch and Peleg, FOCS’90] and following [Hitron and Parter, ESA’19], we then provide a general synchronizer machinery. Our construction is very modular and it is based on efficient circuit implementation of threshold gates. The complexity of our scheme is measured by the overhead in the number of neurons and the computation time, both are shown to be polynomial in the largest latency value, and the largest incoming degree ∆ of the original network. Node Delays: We introduce the study of asynchronous communication due to variations in the response rates of the neurons in the network. In real brain networks, the round duration varies between different neurons in the network. Our key result is a simulation methodology that allows one to transform the above mentioned synchronized solution under edge delays into a synchronized under node delays while incurring a small overhead w.r.t space and time.more » « less

We study input compression in a biologically inspired model of neural computation. We demonstrate that a network consisting of a random projection step (implemented via random synaptic connectivity) followed by a sparsification step (implemented via winnertakeall competition) can reduce wellseparated highdimensional input vectors to wellseparated lowdimensional vectors. By augmenting our network with a third module, we can efficiently map each input (along with any small perturbations of the input) to a unique representative neuron, solving a neural clustering problem. Both the size of our network and its processing time, i.e., the time it takes the network to compute the compressed output given a presented input, are independent of the (potentially large) dimension of the input patterns and depend only on the number of distinct inputs that the network must encode and the pairwise relative Hamming distance between these inputs. The first two steps of our construction mirror known biological networks, for example, in the fruit fly olfactory system [Caron et al., 2013; Lin et al., 2014; Dasgupta et al., 2017]. Our analysis helps provide a theoretical understanding of these networks and lay a foundation for how random compression and input memorization may be implemented in biological neural networks. Technically, a contribution in our network design is the implementation of a shortterm memory. Our network can be given a desired memory time t_m as an input parameter and satisfies the following with high probability: any pattern presented several times within a time window of t_m rounds will be mapped to a single representative output neuron. However, a pattern not presented for c⋅t_m rounds for some constant c>1 will be "forgotten", and its representative output neuron will be released, to accommodate newly introduced patterns.more » « less

We present a formal, mathematical foundation for modeling and reasoning about the behavior of synchronous, stochastic Spiking Neural Networks (SNNs), which have been widely used in studies of neural computation. Our approach follows paradigms established in the field of concurrency theory. Our SNN model is based on directed graphs of neurons, classified as input, output, and internal neurons. We focus here on basic SNNs, in which a neuron’s only state is a Boolean value indicating whether or not the neuron is currently firing. We also define the external behavior of an SNN, in terms of probability distributions on its external firing patterns. We define two operators on SNNs: a composition operator, which supports modeling of SNNs as combinations of smaller SNNs, and a hiding operator, which reclassifies some output behavior of an SNN as internal. We prove results showing how the external behavior of a network built using these operators is related to the external behavior of its component networks. Finally, we definition the notion of a problem to be solved by an SNN, and show how the composition and hiding operators affect the problems that are solved by the networks. We illustrate our definitions with three examples: a Boolean circuit constructed from gates, an Attention network constructed from a WinnerTakeAll network and a Filter network, and a toy example involving combining two networks in a cyclic fashion.more » « less