We consider the task of measuring time with probabilistic threshold gates implemented by bioinspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.We first consider a deterministic implementation of a neural timer and show that Θ(logt)(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2 t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{log log 1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [AwerbuchPeleg, FOCS’90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time.
more »
« less
Counting to Ten with Two Fingers: Compressed Counting with Spiking Neurons
We consider the task of measuring time with probabilistic threshold gates implemented by bioinspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. We first consider a deterministic implementation of a neural timer and show that Θ(logt) (deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(loglog1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{loglog1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks. Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks.
more »
« less
 Award ID(s):
 1810758
 NSFPAR ID:
 10155502
 Date Published:
 Journal Name:
 European Symposium on Algorithms (ESA)
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this


Biological neural computation is inherently asynchronous due to large variations in neuronal spike timing and transmission delays. Sofar, most theoretical work on neural networks assumes the synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at understanding the barriers of asynchronous neural computation from an algorithmic perspective. We consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural Networks 97] to the asynchronous setting by taking into account edge and node delays.  Edge Delays: We define an asynchronous model for spiking neurons in which the latency values (i.e., transmission delays) of non selfloop edges vary adversarially over time. This extends the recent work of [Hitron and Parter, ESA'19] in which the latency values are restricted to be fixed over time. Our first contribution is an impossibility result that implies that the assumption that selfloop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly, in real biological networks selfloop edges (a.k.a. autapse) are indeed free of delays, and the latter has been noted by neuroscientists to be crucial for network synchronization. To capture the computational challenges in this setting, we first consider the implementation of a single NOT gate. This simple function already captures the fundamental difficulties in the asynchronous setting. Our key technical results are space and time upper and lower bounds for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers [Awerbuch and Peleg, FOCS'90] and following [Hitron and Parter, ESA'19], we then provide a general synchronizer machinery. Our construction is very modular and it is based on efficient circuit implementation of threshold gates. The complexity of our scheme is measured by the overhead in the number of neurons and the computation time, both are shown to be polynomial in the largest latency value, and the largest incoming degree Δ of the original network.  Node Delays: We introduce the study of asynchronous communication due to variations in the response rates of the neurons in the network. In real brain networks, the round duration varies between different neurons in the network. Our key result is a simulation methodology that allows one to transform the above mentioned synchronized solution under edge delays into a synchronized under node delays while incurring a small overhead w.r.t space and time.more » « less

Biological neural computation is inherently asynchronous due to large variations in neuronal spike timing and transmission delays. Sofar, most theoretical work on neural networks assumes the synchronous setting where neurons fire simultaneously in discrete rounds. In this work we aim at understanding the barriers of asynchronous neural computation from an algorithmic perspective. We consider an extension of the widely studied model of synchronized spiking neurons [Maass, Neural= Networks 97] to the asynchronous setting by taking into account edge and node delays. Edge Delays: We define an asynchronous model for spiking neurons in which the latency values (i.e., transmission delays) of non selfloop edges vary adversarially over time. This extends the recent work of [Hitron and Parter, ESA’19] in which the latency values are restricted to be fixed over time. Our first contribution is an impossibility result that implies that the assumption that selfloop edges have no delays (as assumed in Hitron and Parter) is indeed necessary. Interestingly, in real biological networks selfloop edges (a.k.a. autapse) are indeed free of delays, and the latter has been noted by neuroscientists to be crucial for network synchronization. To capture the computational challenges in this setting, we first consider the implementation of a single NOT gate. This simple function already captures the fundamental difficulties in the asynchronous setting. Our key technical results are space and time upper and lower bounds for the NOT function, our time bounds are tight. In the spirit of the distributed synchronizers [Awerbuch and Peleg, FOCS’90] and following [Hitron and Parter, ESA’19], we then provide a general synchronizer machinery. Our construction is very modular and it is based on efficient circuit implementation of threshold gates. The complexity of our scheme is measured by the overhead in the number of neurons and the computation time, both are shown to be polynomial in the largest latency value, and the largest incoming degree ∆ of the original network. Node Delays: We introduce the study of asynchronous communication due to variations in the response rates of the neurons in the network. In real brain networks, the round duration varies between different neurons in the network. Our key result is a simulation methodology that allows one to transform the above mentioned synchronized solution under edge delays into a synchronized under node delays while incurring a small overhead w.r.t space and time.more » « less

Spiking Neural Networks (SNN) are fast emerging as an alternative option to Deep Neural Networks (DNN). They are computationally more powerful and provide higher energyefficiency than DNNs. While exciting at first glance, SNNs contain securitysensitive assets (e.g., neuron threshold voltage) and vulnerabilities (e.g., sensitivity of classification accuracy to neuron threshold voltage change) that can be exploited by the adversaries. We explore global fault injection attacks using external power supply and laserinduced local power glitches on SNN designed using common analog neurons to corrupt critical training parameters such as spike amplitude and neuron’s membrane threshold potential. We also analyze the impact of powerbased attacks on the SNN for digit classification task and observe a worstcase classification accuracy degradation of −85.65%. We explore the impact of various design parameters of SNN (e.g., learning rate, spike trace decay constant, and number of neurons) and identify design choices for robust implementation of SNN. We recover classification accuracy degradation by 30–47% for a subset of powerbased attacks by modifying SNN training parameters such as learning rate, trace decay constant, and neurons per layer. We also propose hardwarelevel defenses, e.g., a robust current driver design that is immune to poweroriented attacks, improved circuit sizing of neuron components to reduce/recover the adversarial accuracy degradation at the cost of negligible area, and 25% power overhead. We also propose a dummy neuronbased detection of voltage fault injection at ∼1% power and area overhead each.more » « less

Winnertakeall (WTA) refers to the neural operation that selects a (typically small) group of neurons from a large neuron pool. It is conjectured to underlie many of the brain’s fundamental computational abilities. However, not much is known about the robustness of a spikebased WTA network to the inherent randomness of the input spike trains.In this work, we consider a spikebased k–WTA model wherein n randomly generated input spike trains compete with each other based on their underlying firing rates and k winners are supposed to be selected. We slot the time evenly with each time slot of length 1 ms and model then input spike trains as n independent Bernoulli processes. We analytically characterize the minimum waiting time needed so that a target minimax decision accuracy (success probability) can be reached. We first derive an informationtheoretic lower bound on the waiting time. We show that to guarantee a (minimax) decision error≤δ(whereδ∈(0,1)), the waiting time of any WTA circuit is at least ((1−δ)log(k(n−k)+1)−1)TR,where R⊆(0,1)is a finite set of rates and TR is a difficulty parameter of a WTA task with respect to set R for independent input spike trains. Additionally,TR is independent of δ,n,and k. We then design a simple WTA circuit whose waiting time is 2524L. Su, C.J. Chang, and N. Lynch O((log(1δ)+logk(n−k))TR),provided that the local memory of each output neuron is sufficiently long. It turns out that for any fixed δ, this decision time is orderoptimal (i.e., it matches the above lower bound up to a multiplicative constant factor) in terms of its scaling inn,k, and TR.more » « less