skip to main content


Title: Fully Convolutional ASR for Less-Resourced Endangered Languages
The application of deep learning to automatic speech recognition (ASR) has yielded dramatic accuracy increases for languages with abundant training data, but languages with limited training resources have yet to see accuracy improvements on this scale. In this paper, we compare a fully convolutional approach for acoustic modelling in ASR with a variety of established acoustic modeling approaches. We evaluate our method on Seneca, a low-resource endangered language spoken in North America. Our method yields word error rates up to 40% lower than those reported using both standard GMM-HMM approaches and established deep neural methods, with a substantial reduction in training time. These results show particular promise for languages like Seneca that are both endangered and lack extensive documentation.  more » « less
Award ID(s):
1761562
NSF-PAR ID:
10161889
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)
Page Range / eLocation ID:
126–130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Although the application of deep learning to automatic speech recognition (ASR) has resulted in dramatic reductions in word error rate for languages with abundant training data, ASR for languages with few resources has yet to benefit from deep learning to the same extent. In this paper, we investigate various methods of acoustic modeling and data augmentation with the goal of improving the accuracy of a deep learning ASR framework for a low-resource language with a high baseline word error rate. We compare several methods of generating synthetic acoustic training data via voice transformation and signal distortion, and we explore several strategies for integrating this data into the acoustic training pipeline. We evaluate our methods on an indigenous language of North America with minimal training resources. We show that training initially via transfer learning from an existing high-resource language acoustic model, refining weights using a heavily concentrated synthetic dataset, and finally fine-tuning to the target language using limited synthetic data reduces WER by 15% over just transfer learning using deep recurrent methods. Further, we show improvements over traditional frameworks by 19% using a similar multistage training with deep convolutional approaches. 
    more » « less
  2. Documenting endangered languages supports the historical preservation of diverse cultures. Automatic speech recognition (ASR), while potentially very useful for this task, has been underutilized for language documentation due to the challenges inherent in building robust models from extremely limited audio and text training resources. In this paper, we explore the utility of supplementing existing training resources using synthetic data, with a focus on Seneca, a morphologically complex endangered language of North America. We use transfer learning to train acoustic models using both the small amount of available acoustic training data and artificially distorted copies of that data. We then supplement the language model training data with verb forms generated by rule and sentences produced by an LSTM trained on the available text data. The addition of synthetic data yields reductions in word error rate, demonstrating the promise of data augmentation for this task. 
    more » « less
  3. We present a simple approach to improve direct speech-to-text translation (ST) when the source language is low-resource: we pre-train the model on a high-resource automatic speech recognition (ASR) task, and then fine-tune its parameters for ST. We demonstrate that our approach is effective by pre-training on 300 hours of English ASR data to improve SpanishEnglish ST from 10.8 to 20.2 BLEU when only 20 hours of Spanish-English ST training data are available. Through an ablation study, we find that the pre-trained encoder (acoustic model) accounts for most of the improvement, despite the fact that the shared language in these tasks is the target language text, not the source language audio. Applying this insight, we show that pre-training on ASR helps ST even when the ASR language differs from both source and target ST languages: pre-training on French ASR also improves Spanish-English ST. Finally, we show that the approach improves performance on a true low-resource task: pre-training on a combination of English ASR and French ASR improves Mboshi-French ST, where only 4 hours of data are available, from 3.5 to 7.1 BLEU. 
    more » « less
  4. null (Ed.)
    The idea of combining multiple languages’ recordings to train a single automatic speech recognition (ASR) model brings the promise of the emergence of universal speech representation. Recently, a Transformer encoder-decoder model has been shown to leverage multilingual data well in IPA transcriptions of languages presented during training. However, the representations it learned were not successful in zero-shot transfer to unseen languages. Because that model lacks an explicit factorization of the acoustic model (AM) and language model (LM), it is unclear to what degree the performance suffered from differences in pronunciation or the mismatch in phonotactics. To gain more insight into the factors limiting zero-shot ASR transfer, we replace the encoder-decoder with a hybrid ASR system consisting of a separate AM and LM. Then, we perform an extensive evaluation of monolingual, multilingual, and crosslingual (zero-shot) acoustic and language models on a set of 13 phonetically diverse languages. We show that the gain from modeling crosslingual phonotactics is limited, and imposing a too strong model can hurt the zero-shot transfer. Furthermore, we find that a multilingual LM hurts a multilingual ASR system’s performance, and retaining only the target language’s phonotactic data in LM training is preferable. 
    more » « less
  5. null (Ed.)
    Phones, the segmental units of the International Phonetic Al-phabet (IPA), are used for lexical distinctions in most human languages; Tones, the suprasegmental units of the IPA,are used in perhaps 70%. Many previous studies have explored cross-lingual adaptation of automatic speech recognition(ASR) phone models, but few have explored the multilingual and cross-lingual transfer of synchronization between phones and tones. In this paper, we test four Connectionist Temporal Classification (CTC)-based acoustic models, differing in the degree of synchrony they impose between phones and tones.Models are trained and tested multilingually in three languages,then adapted and tested cross-lingually in a fourth. Both synchronous and asynchronous models are effective in both multi-lingual and cross-lingual settings. Synchronous models achieve lower error rate in the joint phone+tone tier, but asynchronous training results in lower tone error rate. 
    more » « less