skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: LYCODON ALCALAI (Alcala’s Wolf Snake). DIET.
Lycodon alcalai is a small, terrestrial snake endemic to the northern Philippines where it is known from the islands of Batan (70 km2), Sabtang (16 km2), and Calayan (196 km2; Ota and Ross 1994. Copeia 1994:159–174; Oliveros et al. 2011. Sci. Pap. Nat. Hist. Mus. Univ. Kans. 43:1–20). Although L. alcalai has been reported to prey upon Common Tree Frogs (Polypedates leucomystax) and unidentified, soft-shelled reptilian eggs (Ota and Ross 1994, op. cit.), little natural history information is available for this species. Here, we report on a new diet item for L. alcalai: an as of yet undescribed species of scaly-toed gecko (Lepidodactylus).  more » « less
Award ID(s):
1657648
PAR ID:
10161891
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Herpetological review
Volume:
50
Issue:
3
ISSN:
0018-084X
Page Range / eLocation ID:
595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    High sea ice production (SIP) generates high-salinity water, thus, influencing the global thermohaline circulation. Estimation from passive microwave data and heat flux models have indicated that the Ross Ice Shelf polynya (RISP) may be the highest SIP region in the Southern Oceans. However, the coarse spatial resolution of passive microwave data limited the accuracy of these estimates. The Sentinel-1 Synthetic Aperture Radar dataset with high spatial and temporal resolution provides an unprecedented opportunity to more accurately distinguish both polynya area/extent and occurrence. In this study, the SIPs of RISP and McMurdo Sound polynya (MSP) from 1 March–30 November 2017 and 2018 are calculated based on Sentinel-1 SAR data (for area/extent) and AMSR2 data (for ice thickness). The results show that the wind-driven polynyas in these two years occurred from the middle of March to the middle of November, and the occurrence frequency in 2017 was 90, less than 114 in 2018. However, the annual mean cumulative SIP area and volume in 2017 were similar to (or slightly larger than) those in 2018. The average annual cumulative polynya area and ice volume of these two years were 1,040,213 km2 and 184 km3 for the RSIP, and 90,505 km2 and 16 km3 for the MSP, respectively. This annual cumulative SIP (volume) is only 1/3–2/3 of those obtained using the previous methods, implying that ice production in the Ross Sea might have been significantly overestimated in the past and deserves further investigations. 
    more » « less
  2. Over-the-air federated learning (OTA-FL) is a communication-effective approach for achieving distributed learning tasks. In this paper, we aim to enhance OTA-FL by seamlessly combining sensing into the communication-computation integrated system. Our research reveals that the wireless waveform used to convey OTA-FL parameters possesses inherent properties that make it well-suited for sensing, thanks to its remarkable auto-correlation characteristics. By leveraging the OTA-FL learning statistics, i.e., means and variances of local gradients in each training round, the sensing results can be embedded therein without the need for additional time or frequency resources. Finally, by considering the imperfections of learning statistics that are neglected in the prior works, we end up with an optimized the transceiver design to maximize the OTA-FL performance. Simulations validate that the proposed method not only achieves outstanding sensing performance but also significantly lowers the learning error bound. 
    more » « less
  3. Over-the-air federated learning (OTA-FL) is a communication effective approach for achieving distributed learning tasks. In this paper, we aim to enhance OTA-FL by seamlessly combining sensing into the communication-computation integrated system. Our research reveals that the wireless waveform used to convey OTA-FL parameters possesses inherent properties that make it well-suited for sensing, thanks to its remarkable auto- correlation characteristics. By leveraging the OTA-FL learning statistics, i.e., means and variances of local gradients in each training round, the sensing results can be embedded therein without the need for additional time or frequency resources. Finally, by considering the imperfections of learning statistics that are neglected in the prior works, we end up with an optimized the transceiver design to maximize the OTA-FL performance. Simulations validate that the proposed method not only achieves outstanding sensing performance but also significantly lowers the learning error bound. 
    more » « less
  4. Over-the-air federated learning (OTA-FL) is a communicationeffective approach for achieving distributed learning tasks. In this paper, we aim to enhance OTA-FL by seamlessly combining sensing into the communication-computation integrated system. Our research reveals that the wireless waveform used to convey OTA-FL parameters possesses inherent properties that make it well-suited for sensing, thanks to its remarkable auto-correlation characteristics. By leveraging the OTA-FL learning statistics, i.e., means and variances of local gradients in each training round, the sensing results can be embedded therein without the need for additional time or frequency resources. Finally, by considering the imperfections of learning statistics that are neglected in the prior works, we end up with an optimized the transceiver design to maximize the OTA-FL performance. Simulations validate that the proposed method not only achieves outstanding sensing performance but also significantly lowers the learning error bound. 
    more » « less
  5. null (Ed.)
    Finite-fault models for the 2010 M w 8.8 Maule, Chile earthquake indicate bilateral rupture with large-slip patches located north and south of the epicenter. Previous studies also show that this event features significant slip in the shallow part of the megathrust, which is revealed through correction of the forward tsunami modeling scheme used in tsunami inversions. The presence of shallow slip is consistent with the coseismic seafloor deformation measured off the Maule region adjacent to the trench and confirms that tsunami observations are particularly important for constraining far-offshore slip. Here, we benchmark the method of Optimal Time Alignment (OTA) of the tsunami waveforms in the joint inversion of tsunami (DART and tide-gauges) and geodetic (GPS, InSAR, land-leveling) observations for this event. We test the application of OTA to the tsunami Green’s functions used in a previous inversion. Through a suite of synthetic tests we show that if the bias in the forward model is comprised only of delays in the tsunami signals, the OTA can correct them precisely, independently of the sensors (DART or coastal tide-gauges) and, to the first-order, of the bathymetric model used. The same suite of experiments is repeated for the real case of the 2010 Maule earthquake where, despite the results of the synthetic tests, DARTs are shown to outperform tide-gauges. This gives an indication of the relative weights to be assigned when jointly inverting the two types of data. Moreover, we show that using OTA is preferable to subjectively correcting possible time mismatch of the tsunami waveforms. The results for the source model of the Maule earthquake show that using just the first-order modeling correction introduced by OTA confirms the bilateral rupture pattern around the epicenter, and, most importantly, shifts the inferred northern patch of slip to a shallower position consistent with the slip models obtained by applying more complex physics-based corrections to the tsunami waveforms. This is confirmed by a slip model refined by inverting geodetic and tsunami data complemented with a denser distribution of GPS data nearby the source area. The models obtained with the OTA method are finally benchmarked against the observed seafloor deformation off the Maule region. We find that all of the models using the OTA well predict this offshore coseismic deformation, thus overall, this benchmarking of the OTA method can be considered successful. 
    more » « less