Abstract When a water drop is placed onto a soft polymer network, a wetting ridge develops at the drop periphery. The height of this wetting ridge is typically governed by the drop surface tension balanced by elastic restoring forces of the polymer network. However, the situation is more complex when the network is swollen with fluid, because the fluid may separate from the network at the contact line. Here we study the fluid separation and network deformation at the contact line of a soft polydimethylsiloxane (PDMS) network, swollen with silicone oil. By controlling both the degrees of crosslinking and swelling, we find that more fluid separates from the network with increasing swelling. Above a certain swelling, network deformation decreases while fluid separation increases, demonstrating synergy between network deformation and fluid separation. When the PDMS network is swollen with a fluid having a negative spreading parameter, such as hexadecane, no fluid separation is observed. A simple balance of interfacial, elastic, and mixing energies can describe this fluid separation behavior. Our results reveal that a swelling fluid, commonly found in soft networks, plays a critical role in a wetting ridge.
more »
« less
Parameter Estimation and Line Width Control of Robot Guided Inkjet Deposition
In the field of inkjet deposition, there is a lack of specific knowledge to detect and change drop volume to regulate fluid placement. In this paper, we present a novel control scheme to regulate drop diameter on a surface with unknown properties. We derive a model for line width as a function of nozzle velocity, valve duty cycle, and physical properties of fluid and surface. As many of these variables are generally unknown, we present a nonlinear estimator to estimate their cumulative effects as a single variable. Next, benefiting from our estimation knowledge, a closed-loop control method is designed to track a time-varying line width. Stability of both the estimator and control are established using Lyapunov stability theory, and the control is shown to be robust to errors in the estimator. Simulations and experimental results confirm the stability and performance of the approach.
more »
« less
- Award ID(s):
- 1563424
- PAR ID:
- 10161914
- Date Published:
- Journal Name:
- 2018 Annual American Control Conference (ACC)
- Page Range / eLocation ID:
- 918 to 924
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionThis paper addresses the critical need for adaptive formation control in Autonomous Underwater Vehicles (AUVs) without requiring knowledge of system dynamics or environmental data. Current methods, often assuming partial knowledge like known mass matrices, limit adaptability in varied settings. MethodsWe proposed two-layer framework treats all system dynamics, including the mass matrix, as entirely unknown, achieving configuration-agnostic control applicable to multiple underwater scenarios. The first layer features a cooperative estimator for inter-agent communication independent of global data, while the second employs a decentralized deterministic learning (DDL) controller using local feedback for precise trajectory control. The framework's radial basis function neural networks (RBFNN) store dynamic information, eliminating the need for relearning after system restarts. ResultsThis robust approach addresses uncertainties from unknown parametric values and unmodeled interactions internally, as well as external disturbances such as varying water currents and pressures, enhancing adaptability across diverse environments. DiscussionComprehensive and rigorous mathematical proofs are provided to confirm the stability of the proposed controller, while simulation results validate each agent’s control accuracy and signal boundedness, confirming the framework’s stability and resilience in complex scenarios.more » « less
-
null (Ed.)We present the results of a combined experimental and theoretical investigation of the stability of rings of millimetric droplets bouncing on the surface of a vibrating liquid bath. As the bath's vibrational acceleration is increased progressively, droplet rings are found to destabilize into a rich variety of dynamical states including steady rotational motion, periodic radial or azimuthal oscillations and azimuthal travelling waves. The instability observed is dependent on the ring's initial radius and drop number, and whether the drops are bouncing in- or out-of-phase relative to their neighbours. As the vibrational acceleration is further increased, more exotic dynamics emerges, including quasi-periodic motion and rearrangement into regular polygonal structures. Linear stability analysis and simulation of the rings based on the theoretical model of Couchman et al. ( J. Fluid Mech. , vol. 871, 2019, pp. 212–243) largely reproduce the observed behaviour. We demonstrate that the wave amplitude beneath each drop has a significant influence on the stability of the multi-droplet structures: the system seeks to minimize the mean wave amplitude beneath the drops at impact. Our work provides insight into the complex interactions and collective motions that arise in bouncing-droplet aggregates.more » « less
-
null (Ed.)The wave excitation force is required in some control algorithms of wave energy converters. Excitation force is not, however, directly measurable. Therefore, to obtain excitation force information for control implementation, a number of excitation force estimators have been developed. The estimation performance is usually validated by low-fidelity simulations. This paper assesses the performance of a wave estimator in a Computational Fluid Dynamics (CFD) based Numerical Wave Tank (CNWT), where the estimator collects necessary measurements in-line with the high-fidelity simulation. The proposed simulation framework can be directly applied for a controlled wave energy converter. Numerical simulations are conducted on the implemented estimator, and the estimated excitation force is compared with a benchmark force that is extracted from a diffraction test.more » « less
-
We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury.more » « less
An official website of the United States government

