Objective. Maternal stress is a psychological response to the demands of motherhood. A high level of maternal stress is a risk factor for maternal mental health problems, including depression and anxiety, as well as adverse infant socioemotional and cognitive outcomes. Yet, levels of maternal stress (i.e., levels of stress related to parenting) among low-risk samples are rarely studied longitudinally, particularly in the first year after birth. Design. We measured maternal stress in an ethnically diverse sample of low-risk, healthy U.S. mothers of healthy infants (N = 143) living in South Florida across six time points between 2 weeks and 14 months postpartum using the Parenting Stress Index-Short Form, capturing stress related to the mother, mother-infant interactions, and the infant. Results. Maternal distress increased as infants aged for mothers with more than one child, but not for first-time mothers whose distress levels remained low and stable across this period. Stress related to mother-infant dysfunctional interactions lessened over the first 8 months. Mothers’ stress about their infants’ difficulties decreased from 2 weeks to 6 months, and subsequently increased from 6 to 14 months. Conclusions. Our findings suggest that maternal stress is dynamic across the first year after birth. The current study adds to our understanding of typical developmental patterns in early motherhood and identifies potential domains and time points as targets for future interventions.
more »
« less
Toward Predicting Infant Developmental Outcomes from Day-Long Inertial Motion Recordings
As improvements in medicine lower infant mortality rates, more infants with neuromotor challenges survive past birth. The motor, social, and cognitive development of these infants are closely interrelated, and challenges in any of these areas can lead to developmental differences. Thus, analyzing one of these domains - the motion of young infants - can yield insights on developmental progress to help identify individuals who would benefit most from early interventions. In the presented data collection, we gathered day-long inertial motion recordings from N = 12 typically developing (TD) infants and N = 24 infants who were classified as at risk for developmental delays (AR) due to complications at or before birth. As a first research step, we used simple machine learning methods (decision trees, k-nearest neighbors, and support vector machines) to classify infants as TD or AR based on their movement recordings and demographic data. Our next aim was to predict future outcomes for the AR infants using the same simple classifiers trained from the same movement recordings and demographic data. We achieved a 94.4% overall accuracy in classifying infants as TD or AR, and an 89.5% overall accuracy predicting future outcomes for the AR infants. The addition of inertial data was much more important to producing accurate future predictions than identification of current status. This work is an important step toward helping stakeholders to monitor the developmental progress of AR infants and identify infants who may be at the greatest risk for ongoing developmental challenges.
more »
« less
- Award ID(s):
- 1706964
- PAR ID:
- 10162125
- Date Published:
- Journal Name:
- IEEE transactions on neural systems and rehabilitation engineering
- ISSN:
- 1558-0210
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Early life adversity predicts shorter adult lifespan in several animal taxa. Yet, work on long‐lived primate populations suggests the evolution of mechanisms that contribute to resiliency and long lives despite early life insults. Here, we tested associations between individual and cumulative early life adversity and lifespan on rhesus macaques at the Cayo Santiago Biological Field Station using 50 years of demographic data. We performed sex‐specific survival analyses at different life stages to contrast short‐term effects of adversity (i.e., infant survival) with long‐term effects (i.e., adult survival). Female infants showed vulnerability to multiple adversities at birth, but affected females who survived to adulthood experienced a reduced risk later in life. In contrast, male infants showed vulnerability to a lower number of adversities at birth, but those who survived to adulthood were negatively affected by both early life individual and cumulative adversity. Our study shows profound immediate effects of insults on female infant cohorts and suggests that affected female adults are more robust. In contrast, adult males who experienced harsh conditions early in life showed an increased mortality risk at older ages as expected from hypotheses within the life course perspective. Our analysis suggests sex‐specific selection pressures on life histories and highlights the need for studies addressing the effects of early life adversity across multiple life stages.more » « less
-
This paper investigates the decision-making outcomes and cognitive-physical load implications of integrating a Building Information Modeling-driven Augmented Reality (AR) system into retrofitting design and how movement is best leveraged to understand daylighting impacts. We conducted a study with 128 non-expert participants, who were asked to choose a window facade to improve an interior space. We found no significant difference in the overall decision-making outcome between those who used an AR tool or a conventional desktop approach and that greater eye movement in AR was related to non-experts better balancing the complicated impacts facades have on daylight, aesthetics, and energy.more » « less
-
Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation. This work describes an alternative approach to representing three-dimensional rotations using a normalized vector around which an identified joint angle defines the overall rotation, rather than a traditional Euler angle approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this approach may be preferred for many graphics, vision, and virtual reality software applications. The analytical method was validated with laboratory data gathered from an infant dummy leg’s flexion and extension knee movements and applied to a living subject’s upper limb movement. The results showed that the novel approach could reasonably handle a simple case and provide a detailed analysis of axis-angle migration. The described algorithm could play a notable role in the biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may detect pathological patterns of joint disease and injury.more » « less
-
The trend toward soft wearable robotic systems creates a compelling need for new and reliable sensor systems that do not require a rigid mounting frame. Despite the growing use of inertial measurement units (IMUs) in motion tracking applications, sensor drift and IMU-to-segment misalignment still represent major problems in applications requiring high accuracy. This paper proposes a novel 2-step calibration method which takes advantage of the periodic nature of human locomotion to improve the accuracy of wearable inertial sensors in measuring lower-limb joint angles. Specifically, the method was applied to the determination of the hip joint angles during walking tasks. The accuracy and precision of the calibration method were accessed in a group of N = 8 subjects who walked with a custom-designed inertial motion capture system at 85% and 115% of their comfortable pace, using an optical motion capture system as reference. In light of its low computational complexity and good accuracy, the proposed approach shows promise for embedded applications, including closed-loop control of soft wearable robotic systems.more » « less
An official website of the United States government

