skip to main content

Title: Mechanical properties of polymeric microfiltration membranes
The influence of the pore topology and polymer properties on mechanical characteristics of asymmetric polyethersulfone (PES) and symmetric polyvinylidene fluoride (PVDF) microfiltration membranes was investigated by conducting elongation, creep, stress relaxation, small-amplitude oscillatory and bubble point pressure tests. The main aspects of the membrane stress-strain curves were found to be similar despite significant differences in the pore topology and polymer properties. While the Kelvin-Voigt model for solid polymers described the membrane viscoelastic response below the transition to ductile yielding, the stress-strain curves of membranes and solid polymers above the yield point appeared to be drastically different. All tested membranes demonstrated weak strain hardening, low sensitivity to strain rate, significant elastic recovery, stress relaxation and reduction of the bubble point pressure with accumulation of plastic deformation. Therefore, tensile stresses exerted on a membrane under assembling and process conditions should be smaller than the yield stress to assure that they will not impair filter performance. The novelty of our approach is the use of models for perforated plates to evaluate membrane mechanical properties as ductile yielding for both proceeds via localized plastic deformation around pores. Presented results provide a reliable framework for development of membranes with properties tailored to applications.
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of membrane science
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Different semicrystalline polymers including poly(l‐lactic acid), poly(ethylene terephthalate), syndiotactic polystyrene, and polyamide 12 are studied in terms of their mechanical response to uniaxial compression deformation. Apparent decoupling of yielding of amorphous and crystalline phases is identified as separate peaks in the stress–strain curve in the vicinity of the glass transition temperature. The same feature is also observed for the uniaxial extension of predrawn semicrystalline poly(ethylene terephthalate). It is indicated that in absence of a strong amorphous phase a semicrystalline polymer is unable to yield and undergo plastic deformation and it fails in a brittle manner in the uniaxial compression. Treating a semicrystalline polymer as a composite of amorphous and crystalline phases, putting emphasis on the crucial role of amorphous phase in acting as connectors between crystalline domains and indicating that the yielding of amorphous phase is a prerequisite for yielding of crystalline phase, work toward a better understanding of the mechanical properties of semicrystalline polymers at the molecular level is done.

  2. When stressed sufficiently, solid materials yield and deform plastically via reorganization of microscopic constituents. Indeed, it is possible to alter the microstructure of materials by judicious application of stress, an empirical process utilized in practice to enhance the mechanical properties of metals. Understanding the interdependence of plastic flow and microscopic structure in these nonequilibrium states, however, remains a major challenge. Here, we experimentally investigate this relationship, between the relaxation dynamics and microscopic structure of disordered colloidal solids during plastic deformation. We apply oscillatory shear to solid colloidal monolayers and study their particle trajectories as a function of shear rate in the plastic regime. Under these circumstances, the strain rate, the relaxation rate associated with plastic flow, and the sample microscopic structure oscillate together, but with different phases. Interestingly, the experiments reveal that the relaxation rate associated with plastic flow at time t is correlated with the strain rate and sample microscopic structure measured at earlier and later times, respectively. The relaxation rate, in this nonstationary condition, exhibits power-law, shear-thinning behavior and scales exponentially with sample excess entropy. Thus, measurement of sample static structure (excess entropy) provides insight about both strain rate and constituent rearrangement dynamics in the sample at earliermore »times.

    « less
  3. Abstract

    For brittle friction and rock deformation, the coefficientαin the general effective stress relationσe = σ − αPpcan be approximated as unity with sufficient accuracy. However, it is uncertain ifαdeviates from unity for semibrittle flow when both brittle and intracrystalline‐plastic deformation is involved. We conducted triaxial and isostatic compression experiments on synthetic salt‐rocks (∼300 ppm water) at room temperature to test the effective stress relation in the semibrittle regime using silicone oil and argon gas as pore fluids. Confining and pore pressures were cycled while their difference (differential pressure) was kept constant, such that changes in the mechanical behavior would indicate deviation ofαfrom unity. Microstructural observations were used to determine the dependence ofαon true area of grain contact from asperity yielding. In triaxial compression experiments, semibrittle flow involves grain boundary cracking and sliding, and intragranular dislocation glide and cracking. Flow strength remains constant for changes in pore fluid pressure of more than two orders of magnitude. In isostatic compression experiments, samples show combined processes of microcracking, grain boundary sliding, dislocation glide, and fluid‐assisted grain boundary migration recrystallization. Volumetric strain depends directly on the differential pressures (i.e.,αequals one). Analysis of grain‐contact area in both experiments indicates thatαis independent of the true area of contact defined bymore »plastic yielding at grain boundaries. The observation ofαeffectively equals one may be explained by operation of pressure‐independent intracrystalline‐plastic mechanisms and transmission of pore pressure at grain boundaries through thin fluid films.

    « less
  4. Abstract Carbonate sediments play a prominent role on the global geological stage as they store more than $$60\%$$ 60 % of world’s oil and $$40\%$$ 40 % of world’s gas reserves. Prediction of the deformation and failure of porous carbonates is, therefore, essential to minimise reservoir compaction, fault reactivation, or wellbore instability. This relies on our understanding of the mechanisms underlying the observed inelastic response to fluid injection or deviatoric stress perturbations. Understanding the impact of deformation/failure on the hydraulic properties of the rock is also essential as injection/production rates will be affected. In this work, we present new experimental results from triaxial deformation experiments carried out to elucidate the behaviour of a porous limestone reservoir analogue (Savonnières limestone). Drained triaxial and isotropic compression tests were conducted at five different confining pressures in dry and water-saturated conditions. Stress–strain data and X-ray tomography images of the rock indicate two distinct types of deformation and failure regimes: at low confinement (10 MPa) brittle failure in the form of dilatant shear banding was dominant; whereas at higher confinement compaction bands orthogonal to the maximum principal stress formed. In addition to the pore pressure effect, the presence of water in the pore space significantlymore »weakened the rock, thereby shrinking the yield envelope compared to the dry conditions, and shifted the brittle–ductile transition to lower effective confining pressures (from 35 MPa to 29 MPa). Finally, permeability measurements during deformation show a reduction of an order of magnitude in the ductile regime due to the formation of the compaction bands. These results highlight the importance of considering the role of the saturating fluid in the brittle–ductile response of porous rocks and elucidate some of the microstructural processes taking place during this transition.« less
  5. Abstract

    Critical processes including seismic faulting, reservoir compartmentalization, and borehole failure involve high‐pressure mechanical behavior and strain localization of sedimentary rocks such as sandstone. Sand is often used as a model material to study the mechanical behavior of poorly lithified sandstone. Recent studies exploring the multi‐scale mechanics of sand have characterized the brittle, low‐pressure regime of behavior; however, limited work has provided insights into the ductile, high‐pressure regime of behavior viain‐situmeasurements. Critical features of the ductile regime, including grain breakage, grain micromechanics, and volumetric strain behavior therefore remain under‐explored. Here, we use a new high‐pressure triaxial apparatus within‐situx‐ray tomography to provide new insights into deformation banding, grain breakage, and grain micromechanics in Ottawa sand subjected to triaxial compression under confining pressures between 10 and 45 MPa. We observed strain‐hardening at pressures above 15 MPa and strain‐neutral responses at pressures below 15 MPa. Compacting shear bands and grain breakage were observed at all pressures with no significant variation due to grain size, except for minor increases in breakage in less‐rounded sands. Grain breakage emerged at stress levels lower than the assumed yield threshold and more intense breakage was associated with thinner deformation bands. Contact sliding at inter‐grain contacts demonstrated a bifurcation into a bimodalmore »distribution, with intense sliding within deformation bands and reduced but non‐negligible sliding outside of deformation bands, suggesting that off‐band zones remain mechanically active during strain hardening.

    « less