- Award ID(s):
- 1822664
- Publication Date:
- NSF-PAR ID:
- 10162358
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 20
- Issue:
- 10
- Page Range or eLocation-ID:
- 5995 to 6014
- ISSN:
- 1680-7324
- Sponsoring Org:
- National Science Foundation
More Like this
-
The daytime oxidation of biogenic hydrocarbons is attributed to both OH radicals and O3, while nighttime chemistry is dominated by the reaction with O3 and NO3 radicals. Here, the diurnal pattern of Secondary Organic Aerosol (SOA) originating from biogenic hydrocarbons was intensively evaluated under varying environmental conditions (temperature, humidity, sunlight intensity, NOx levels, and seed conditions) by using the UNIfied Partitioning Aerosol phase Reaction (UNIPAR) model, which comprises multiphase gas-particle partitioning and in-particle chemistry. The oxidized products of three different hydrocarbons (isoprene, α-pinene, and β-caryophyllene) were predicted by using near explicit gas mechanisms for four different oxidation paths (OH, O3, NO3, and O(3P)) during day and night. The gas mechanisms implemented the Master Chemical Mechanism (MCM v3.3.1), the reactions that formed low volatility products via peroxy radical (RO2) autoxidation, and self- and cross-reactions of nitrate-origin RO2. In the model, oxygenated products were then classified into volatility-reactivity base lumping species, which were dynamically constructed under varying NOx levels and aging scales. To increase feasibility, the UNIPAR model that equipped mathematical equations for stoichiometric coefficients and physicochemical parameters of lumping species was integrated with the SAPRC gas mechanism. The predictability of the UNIPAR model was demonstrated by simulating chamber-generated SOA data undermore »
-
Abstract. Camphene, a dominant monoterpene emitted from both biogenic and pyrogenicsources, has been significantly understudied, particularly in regard tosecondary organic aerosol (SOA) formation. When camphene represents asignificant fraction of emissions, the lack of model parameterizations forcamphene can result in inadequate representation of gas-phase chemistry andunderprediction of SOA formation. In this work, the first mechanistic study of SOA formation from camphene was performed using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). GECKO-A was used to generate gas-phase chemical mechanisms for camphene and two well-studied monoterpenes, α-pinene and limonene, as well as to predict SOAmass formation and composition based on gas/particle partitioning theory. Themodel simulations represented observed trends in published gas-phase reactionpathways and SOA yields well under chamber-relevant photooxidation and darkozonolysis conditions. For photooxidation conditions, 70 % of thesimulated α-pinene oxidation products remained in the gas phasecompared to 50 % for limonene, supporting model predictions andobservations of limonene having higher SOA yields than α-pinene underequivalent conditions. The top 10 simulated particle-phase products in theα-pinene and limonene simulations represented 37 %–50 % ofthe SOA mass formed and 6 %–27 % of the hydrocarbon mass reacted. Tofacilitate comparison of camphene with α-pinene and limonene, modelsimulations were run under idealized atmospheric conditions, wherein thegas-phase oxidantmore »
-
Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprene epoxydiols (IEPOX SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. With the explicit chemical mechanism, we find that IEPOX SOA is predicted to increasemore »
-
Abstract. Secondary organic aerosol derived from isopreneepoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction oftotal isoprene SOA, but the current volatility-based lumped SOAparameterizations are not appropriate to represent the reactive uptake ofIEPOX onto acidified aerosols. A full explicit modeling of this chemistryis however computationally expensive owing to the many species and reactionstracked, which makes it difficult to include it in chemistry–climate modelsfor long-term studies. Here we present three simplified parameterizations(version 1.0) for IEPOX-SOA simulation, based on an approximateanalytical/fitting solution of the IEPOX-SOA yield and formation timescale.The yield and timescale can then be directly calculated using the globalmodel fields of oxidants, NO, aerosol pH and other key properties, and drydeposition rates. The advantage of the proposed parameterizations is thatthey do not require the simulation of the intermediates while retaining thekey physicochemical dependencies. We have implemented the newparameterizations into the GEOS-Chem v11-02-rc chemical transport model,which has two empirical treatments for isoprene SOA (the volatility-basis-set, VBS, approach and a fixed 3 % yield parameterization), and comparedall of them to the case with detailed fully explicit chemistry. The bestparameterization (PAR3) captures the global tropospheric burden of IEPOX-SOAand its spatiotemporal distribution (R2=0.94) vs. thosesimulated by the full chemistry, while being more computationally efficient(∼5 times faster),more »
-
Chemical mechanisms play an important role in simulating the atmospheric chemistry of volatile organic compound oxidation. Comparison of mechanism simulations with laboratory chamber data tests our level of understanding of the prevailing chemistry as well as the dynamic processes occurring in the chamber itself. α-Pinene photooxidation is a well-studied system experimentally, for which detailed chemical mechanisms have been formulated. Here, we present the results of simulating low-NO α-pinene photooxidation experiments conducted in the Caltech chamber with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) under varying concentrations of seed particles and OH levels. Unexpectedly, experiments conducted at low and high OH levels yield the same secondary organic aerosol (SOA) growth, whereas GECKO-A predicts greater SOA growth under high OH levels. SOA formation in the chamber is a result of a competition among the rates of gas-phase oxidation to low-volatility products, wall deposition of these products, and condensation into the aerosol phase. Various processes – such as photolysis of condensed-phase products, particle-phase dimerization, and peroxy radical autoxidation – are explored to rationalize the observations. In order to explain the observed similar SOA growth at different OH levels, we conclude that vapor wall loss in the Caltechmore »