skip to main content


Title: Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX SOA) under the Shared Socioeconomic Pathways: the importance of physicochemical dependency
Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprene epoxydiols (IEPOX SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. With the explicit chemical mechanism, we find that IEPOX SOA is predicted to increase on average under all future SSP scenarios but with some variability in the results depending on regions and the scenario chosen. Isoprene emissions are the main driver of IEPOX SOA changes in the future climate, but the IEPOX SOA yield from isoprene emissions also changes by up to 50 % depending on the SSP scenario, in particular due to different sulfur emissions. We conduct sensitivity simulations with and without CO2 inhibition of isoprene emissions that is highly uncertain, which results in factor of 2 differences in the predicted IEPOX SOA global burden, especially for the high-CO2 scenarios (SSP3–7.0 and SSP5–8.5). Aerosol pH also plays a critical role in the IEPOX SOA formation rate, requiring accurate calculation of aerosol pH in chemistry models. On the other hand, isoprene SOA calculated with the VBS scheme predicts a nearly constant SOA yield from isoprene emissions across all SSP scenarios; as a result, it mostly follows isoprene emissions regardless of region and scenario. This is because the VBS scheme does not consider heterogeneous chemistry; in other words, there is no dependency on aerosol properties. The discrepancy between the explicit mechanism and VBS parameterization in this study is likely to occur for other SOA components as well, which may also have dependencies that cannot be captured by VBS parameterizations. This study highlights the need for more explicit chemistry or for parameterizations that capture the dependence on key physicochemical drivers when predicting SOA concentrations for climate studies.  more » « less
Award ID(s):
1822664
NSF-PAR ID:
10386142
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
21
Issue:
5
ISSN:
1680-7324
Page Range / eLocation ID:
3395 to 3425
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Secondary organic aerosol derived from isopreneepoxydiols (IEPOX-SOA) is thought to contribute the dominant fraction oftotal isoprene SOA, but the current volatility-based lumped SOAparameterizations are not appropriate to represent the reactive uptake ofIEPOX onto acidified aerosols. A full explicit modeling of this chemistryis however computationally expensive owing to the many species and reactionstracked, which makes it difficult to include it in chemistry–climate modelsfor long-term studies. Here we present three simplified parameterizations(version 1.0) for IEPOX-SOA simulation, based on an approximateanalytical/fitting solution of the IEPOX-SOA yield and formation timescale.The yield and timescale can then be directly calculated using the globalmodel fields of oxidants, NO, aerosol pH and other key properties, and drydeposition rates. The advantage of the proposed parameterizations is thatthey do not require the simulation of the intermediates while retaining thekey physicochemical dependencies. We have implemented the newparameterizations into the GEOS-Chem v11-02-rc chemical transport model,which has two empirical treatments for isoprene SOA (the volatility-basis-set, VBS, approach and a fixed 3 % yield parameterization), and comparedall of them to the case with detailed fully explicit chemistry. The bestparameterization (PAR3) captures the global tropospheric burden of IEPOX-SOAand its spatiotemporal distribution (R2=0.94) vs. thosesimulated by the full chemistry, while being more computationally efficient(∼5 times faster), and accurately captures the response tochanges in NOx and SO2 emissions. On the other hand, the constant3 % yield that is now the default in GEOS-Chem deviates strongly (R2=0.66), as does the VBS (R2=0.47, 49 % underestimation), withneither parameterization capturing the response to emission changes. Withthe advent of new mass spectrometry instrumentation, many detailed SOAmechanisms are being developed, which will challenge global and especiallyclimate models with their computational cost. The methods developed in thisstudy can be applied to other SOA pathways, which can allow includingaccurate SOA simulations in climate and global modeling studies in thefuture.

     
    more » « less
  2. Abstract. The GoAmazon 2014/5 field campaign took place in Manaus, Brazil, and allowed the investigation of the interaction between background-level biogenic air masses and anthropogenic plumes.We present in this work a box model built to simulate the impact of urban chemistry on biogenic secondary organic aerosol (SOA) formation and composition.An organic chemistry mechanism is generated with the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) to simulate the explicit oxidation of biogenic and anthropogenic compounds.A parameterization is also included to account for the reactive uptake of isoprene oxidation products on aqueous particles.The biogenic emissions estimated from existing emission inventories had to be reduced to match measurements.The model is able to reproduce ozone and NOx for clean and polluted situations.The explicit model is able to reproduce background case SOA mass concentrations but does not capture the enhancement observed in the urban plume.The oxidation of biogenic compounds is the major contributor to SOA mass.A volatility basis set (VBS) parameterization applied to the same cases obtains better results than GECKO-A for predicting SOA mass in the box model.The explicit mechanism may be missing SOA-formation processes related to the oxidation of monoterpenes that could be implicitly accounted for in the VBS parameterization. 
    more » « less
  3. Abstract. While camphene is one of the dominant monoterpenesmeasured in biogenic and pyrogenic emission samples, oxidation of camphenehas not been well-studied in environmental chambers and very little is knownabout its potential to form secondary organic aerosol (SOA). The lack ofchamber-derived SOA data for camphene may lead to significant uncertaintiesin predictions of SOA from oxidation of monoterpenes using existingparameterizations when camphene is a significant contributor to totalmonoterpenes. Therefore, to advance the understanding of camphene oxidationand SOA formation and to improve representation of camphene in air qualitymodels, a series of experiments was performed in the University ofCalifornia Riverside environmental chamber to explore camphene SOA massyields and properties across a range of chemical conditions atatmospherically relevant OH concentrations. The experimental results werecompared with modeling simulations obtained using two chemically detailedbox models: Statewide Air Pollution Research Center (SAPRC) and Generatorfor Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A).SOA parameterizations were derived from the chamber data using both thetwo-product and volatility basis set (VBS) approaches. Experiments performedwith added nitrogen oxides (NOx) resulted in higher SOA mass yields (upto 64 %) than experiments performed without added NOx (up to 28 %).In addition, camphene SOA mass yields increased with SOA mass (Mo) atlower mass loadings, but a threshold was reached at higher mass loadings inwhich the SOA mass yields no longer increased with Mo. SAPRC modelingof the chamber studies suggested that the higher SOA mass yields at higherinitial NOx levels were primarily due to higher production of peroxyradicals (RO2) and the generation of highly oxygenated organicmolecules (HOMs) formed through unimolecular RO2 reactions. SAPRCpredicted that in the presence of NOx, camphene RO2 reacts with NOand the resultant RO2 undergoes hydrogen (H)-shift isomerizationreactions; as has been documented previously, such reactions rapidly addoxygen and lead to products with very low volatility (i.e., HOMs). The endproducts formed in the presence of NOx have significantly lowervolatilities, and higher O : C ratios, than those formed by initial campheneRO2 reacting with hydroperoxyl radicals (HO2) or other RO2.Further analysis reveals the existence of an extreme NOx regime, whereinthe SOA mass yield can be suppressed again due to high NO / HO2 ratios.Moreover, particle densities were found to decrease from 1.47 to 1.30 g cm−3 as [HC]0 / [NOx]0 increased and O : C decreased. Theobserved differences in SOA mass yields were largely explained by thegas-phase RO2 chemistry and the competition between RO2+HO2, RO2+ NO, RO2+ RO2, and RO2 autoxidationreactions. 
    more » « less
  4. null (Ed.)
    Abstract. Atmospheric aerosols are a significant public health hazard and havesubstantial impacts on the climate. Secondary organic aerosols (SOAs) havebeen shown to phase separate into a highly viscous organic outer layersurrounding an aqueous core. This phase separation can decrease thepartitioning of semi-volatile and low-volatile species to the organic phaseand alter the extent of acid-catalyzed reactions in the aqueous core. A newalgorithm that can determine SOA phase separation based on their glasstransition temperature (Tg), oxygen to carbon (O:C) ratio and organic massto sulfate ratio, and meteorological conditions was implemented into theCommunity Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 andwas used to simulate the conditions in the continental United States for thesummer of 2013. SOA formed at the ground/surface level was predicted to bephase separated with core–shell morphology, i.e., aqueous inorganic coresurrounded by organic coating 65.4 % of the time during the 2013 SouthernOxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeasternUnited States. Our estimate is in proximity to the previously reported∼70 % in literature. The phase states of organic coatingsswitched between semi-solid and liquid states, depending on theenvironmental conditions. The semi-solid shell occurring with lower aerosolliquid water content (western United States and at higher altitudes) has aviscosity that was predicted to be 102–1012 Pa s, whichresulted in organic mass being decreased due to diffusion limitation.Organic aerosol was primarily liquid where aerosol liquid water was dominant(eastern United States and at the surface), with a viscosity <102 Pa s.Phase separation while in a liquid phase state, i.e.,liquid–liquid phase separation (LLPS), also reduces reactive uptake ratesrelative to homogeneous internally mixed liquid morphology but was lowerthan aerosols with a thick viscous organic shell. The sensitivity casesperformed with different phase-separation parameterization and dissolutionrate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can havevarying impact on fine particulate matter (PM2.5) organic mass, interms of bias and error compared to field data collected during the 2013 SOAS.This highlights the need to better constrain the parameters thatgovern phase state and morphology of SOA, as well as expand mechanisticrepresentation of multiphase chemistry for non-IEPOX SOA formation in modelsaided by novel experimental insights. 
    more » « less
  5. Abstract. Camphene, a dominant monoterpene emitted from both biogenic and pyrogenicsources, has been significantly understudied, particularly in regard tosecondary organic aerosol (SOA) formation. When camphene represents asignificant fraction of emissions, the lack of model parameterizations forcamphene can result in inadequate representation of gas-phase chemistry andunderprediction of SOA formation. In this work, the first mechanistic study of SOA formation from camphene was performed using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A). GECKO-A was used to generate gas-phase chemical mechanisms for camphene and two well-studied monoterpenes, α-pinene and limonene, as well as to predict SOAmass formation and composition based on gas/particle partitioning theory. Themodel simulations represented observed trends in published gas-phase reactionpathways and SOA yields well under chamber-relevant photooxidation and darkozonolysis conditions. For photooxidation conditions, 70 % of thesimulated α-pinene oxidation products remained in the gas phasecompared to 50 % for limonene, supporting model predictions andobservations of limonene having higher SOA yields than α-pinene underequivalent conditions. The top 10 simulated particle-phase products in theα-pinene and limonene simulations represented 37 %–50 % ofthe SOA mass formed and 6 %–27 % of the hydrocarbon mass reacted. Tofacilitate comparison of camphene with α-pinene and limonene, modelsimulations were run under idealized atmospheric conditions, wherein thegas-phase oxidant levels were controlled, and peroxy radicals reacted equallywith HO2 and NO. Metrics for comparison included gas-phasereactivity profiles, time-evolution of SOA mass and yields, andphysicochemical property distributions of gas- and particle-phaseproducts. The controlled-reactivity simulations demonstrated that (1)in the early stages of oxidation, camphene is predicted to form very low-volatility products, lower than α-pinene and limonene, which condenseat low mass loadings; and (2) the final simulated SOA yield for camphene(46 %) was relatively high, in between α-pinene (25 %) andlimonene (74 %). A 50 % α-pinene + 50 % limonene mixture was then used as a surrogate to represent SOA formation from camphene; while simulated SOA mass and yield were well represented, the volatility distribution of the particle-phase products was not. To demonstrate the potential importance of including a parameterized representation of SOA formation by camphene in air quality models, SOA mass and yield were predicted for three wildland fire fuels based on measured monoterpene distributions and published SOA parameterizations for α-pinene and limonene. Using the 50/50 surrogate mixture to represent camphene increased predicted SOA mass by 43 %–50 % for black spruce and by 56 %–108 % for Douglas fir. This first detailed modeling study of the gas-phase oxidation of camphene and subsequent SOA formation highlights opportunities for future measurement–model comparisons and lays a foundation for developing chemical mechanisms and SOA parameterizations for camphene that are suitable for air quality modeling. 
    more » « less