skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of Course Design on Student Engagement and Motivation in an Online Course
We present a course design model for applying project-based learning to an online undergraduate object oriented systems course. In our model, projects and reflection are central to the curriculum. Our model challenges students through modularized, repetitive project cycles beginning with analysis and design (i.e. using pseudo- code, flowcharts, diagrams) then coding, debugging, testing, and finally, reflection. We analyzed student reflection responses from two semesters to extract major themes and sub-themes, then mapped these to the MUSIC model (eMpowerment, Usefulness, Success, Interest, Caring) to understand our model's influence on student engagement and motivation. We found that a rhythmic project cycle encourages self-regulation in online students to formulate project plans, track their progress, and evaluate their solutions. Online students feel empowered when course projects promote choice, flexibility, creativity, experimentation, and extensions to other applications. Online student success is dependent on the clarity of instructions, course scaffolding, level of challenge, instructor feedback, and opportunities to reflect on personal failure, success, and challenge. Online students are interested in projects that are familiar, real-world, and fun, but expect to be situated in team-based environments. Students appreciate instructors who are caring and accommodating to personal needs. We recommend six salient strategies for improving online course and project design: design a visible, rhythmic structure; set transparent expectations and instructions; encourage design before implementation; connect to real-world applications and tools; experience happy challenges; infuse sustained reflection.  more » « less
Award ID(s):
1726809
PAR ID:
10162363
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SIGCSE '20: Proceedings of the 51st ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
303 to 308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dr. Alice Suroviec (Ed.)
    Approaches to student-centered active learning have evolved. The progression in course-design has led to the development of new learning paradigms such as collaborative, problem based, and project-based learning. Course-based undergraduate research experiences (CUREs) are a learning pedagogy that infuses research experiences within the curriculum. This method of instruction increases opportunities for students to participate in more authentic education experiences and is especially beneficial in the science education pathway. CUREs encourage students to be autonomous and emphasize teamwork. Our research proposes methodologies that can maximize student performance, particularly benefiting underrepresented and underprepared female students. Pre- and post- assessments of a CURE classroom were administered to gauge student engagement and success in a General Chemistry course. Specifically, our research focuses on female engagement in CURE projects and overall success and retention rates to test if the teaching methods will support increased gender equity in STEM. 
    more » « less
  2. This experience report is part of an ongoing NSF-funded grant project involving an alliance of six California State University campuses, aimed at promoting Latinx student retention through community engagement in early computer science courses. The project focuses on integrating socially responsible computing (SRC) into the curriculum to transform computing culture and invite marginalized students to participate. At our campus, we integrated SRC concepts into the CS2 course on Data Structures and Algorithms. Initially, SRC concepts were introduced into assignments and projects, which showed promising results but highlighted challenges: the assignments and projects were instructor-created, leading to a gap between students and the concepts. Students passively received topics without proactive participation, resulting in a lack of perceived real-world impact. To address this, we involved the local Latinx community directly. Students visited community partners to identify real-world problems, which they then addressed through term projects, ultimately presenting their solutions to the community. Adopting a startup mindset, students interviewed partners, identified problems, developed prototypes, and delivered solutions. This hands-on approach, first implemented in Spring 2024, significantly enhanced student engagement and provided practical, impactful learning experiences. This report details the course design, implementation process, formative data collected, and reflections on the outcomes. The findings offer valuable insights and recommendations for educators aiming to foster community engagement and socially responsible computing in computer science education, with a specific focus on promoting Latinx student retention. 
    more » « less
  3. Students can have widely varying experiences while working on CS2 coding projects. Challenging experiences can lead to lower motivation and less success in completing these assignments. In this paper, we identify the common struggles CS2 students face while working on course projects and examine whether or not there is evidence of improvement in these areas of struggle between projects. While previous work has been conducted on understanding the importance of self-regulated learning to student success, it has not been fully investigated in the scope of CS2 coursework. We share our observations on investigating student struggles while working on coding projects through their self-reported response to a project reflection form. We apply emergent coding to identify student struggles at three points during the course and compare them against student actions in the course, such as project start times and office hours participation, to identify if students were overcoming these struggles. Through our coding and analysis we have found that while a majority of students encounter struggles with time management and debugging of failing tests, students tend to emphasize wanting to improve their time management skills in future coding assignments. 
    more » « less
  4. We describe a dual-class authentic learning experience (ALE) in which undergraduate upper-division physics students develop low-cost instruments, which are then used by students in a lower-division course to monitor water quality in rivers. The ALE bridges the experiences of lower- and upper-division physics majors by involving students across different stages of their college careers in a collaborative project. Lower-division physics students characterize, calibrate, and troubleshoot the instrument prototypes developed by their upper-division peers, and their work informs instrument modifications in future upper-division physics classes. This paper describes the first iteration of this project along with student perceptions. We find that lower-division students report an increase in their awareness of possible upper-division projects, an increased sense that their coursework has real-world applications, and a heightened understanding of how physicists can play a role in research on environmental issues. 
    more » « less
  5. Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5–1.7 times greater than the odds for a matched group of students from UM’s traditional biology labs. The authenticity of UMARL may have fostered students’ confidence that they can do real research, reinforcing their persistence in STEM. 
    more » « less