skip to main content

Search for: All records

Award ID contains: 1813881

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present Magellan/M2FS spectroscopy of four recently discovered Milky Way star clusters (Gran 3/Patchick 125, Gran 4, Garro 01, and LP 866) and two newly discovered open clusters (Gaia 9 and Gaia 10) at low Galactic latitudes. We measure line-of-sight velocities and stellar parameters ([Fe/H], log g, Teff, and [Mg/Fe]) from high-resolution spectroscopy centred on the Mg triplet and identify 20–80 members per star cluster. We determine the kinematics and chemical properties of each cluster and measure the systemic proper motion and orbital properties by utilizing Gaia astrometry. We find Gran 3 to be an old, metal-poor (mean metallicity of [Fe/H] = −1.83) globular cluster located in the Galactic bulge on a retrograde orbit. Gran 4 is an old, metal-poor ([Fe/H] = −1.84) globular cluster with a halo-like orbit that happens to be passing through the Galactic plane. The orbital properties of Gran 4 are consistent with the proposed LMS-1/Wukong and/or Helmi streams merger events. Garro 01 is metal-rich ([Fe/H] = −0.30) and on a near-circular orbit in the outer disc but its classification as an open cluster or globular cluster is ambiguous. Gaia 9 and Gaia 10 are among the most distant known open clusters at $R_{\mathrm{GC}}\sim 18,~21.2~\mathrm{\, kpc}$ and most metal-poor with [Fe/H] ∼−0.50, −0.34 for Gaia 9 and Gaia 10, respectively. LP 866 is a nearby, metal-rich open cluster ([Fe/H] = +0.10). The discovery and confirmation of multiple star clusters in the Galactic plane shows the power of Gaia astrometry and the star cluster census remains incomplete.

    more » « less
  2. Abstract

    We present spectroscopic data for 16,369 stellar targets within and/or toward 38 dwarf spheroidal galaxies and faint star clusters within the Milky Way halo environment. All spectra come from observations with the multiobject, fiber-fed echelle spectrographs M2FS at the Magellan/Clay telescope or Hectochelle at the MMT, reaching a typical limiting magnitudeG≲ 21. Data products include processed spectra from all observations and catalogs listing estimates—derived from template model fitting—of line-of-sight velocity (median uncertainty 1.4 km s−1) effective temperature (255 K), (base-10 logarithm of) surface gravity (0.59 dex in cgs units), [Fe/H] (0.4 dex) and [Mg/Fe] (0.27 dex) abundance ratios. The sample contains multiepoch measurements for 3720 sources, with up to 15 epochs per source, enabling studies of intrinsic spectroscopic variability. The sample contains 6087 likely red giant stars (based on surface gravity), and 4492 likely members (based on line-of-sight velocity and Gaia-measured proper motion) of the target systems. The number of member stars per individual target system ranges from a few, for the faintest systems, to ∼850 for the most luminous. For most systems, our new samples extend over wider fields than have previously been observed; of the likely members in our samples, 820 lie beyond 2 times the projected half-light radius of their host system, and 42 lie beyond 5Rhalf.

    more » « less
  3. Abstract

    We present the stellar parameters and chemical abundances of 30 elements for five stars located at large radii (3.5–10.7 times the half-light radius) in the Sextans dwarf spheroidal galaxy. We selected these stars using proper motions, radial velocities, and metallicities, and we confirm them as metal-poor members of Sextans with −3.34 ≤ [Fe/H] ≤ −2.64 using high-resolution optical spectra collected with the Magellan Inamori Kyocera Echelle spectrograph. Four of the five stars exhibit normal abundances of C (−0.34 ≤ [C/Fe] ≤ + 0.36), mild enhancement of theαelements Mg, Si, Ca, and Ti ([α/Fe] = +0.12 ± 0.03), and unremarkable abundances of Na, Al, K, Sc, V, Cr, Mn, Co, Ni, and Zn. We identify three chemical signatures previously unknown among stars in Sextans. One star exhibits large overabundances ([X/Fe] > +1.2) of C, N, O, Na, Mg, Si, and K, and large deficiencies of heavy elements ([Sr/Fe] = −2.37 ± 0.25, [Ba/Fe] = −1.45 ± 0.20, [Eu/Fe] < + 0.05), establishing it as a member of the class of carbon-enhanced metal-poor stars with no enhancement of neutron-capture elements. Three stars exhibit moderate enhancements of Eu (+0.17 ≤ [Eu/Fe] ≤ + 0.70), and the abundance ratios among 12 neutron-capture elements are indicative ofr-process nucleosynthesis. Another star is highly enhanced in Sr relative to heavier elements ([Sr/Ba] = +1.21 ± 0.25). These chemical signatures can all be attributed to massive, low-metallicity stars or their end states. Our results, the first for stars at large radius inSextans, demonstrate that these stars were formed in chemically inhomogeneous regions, such as those found in ultra-faint dwarf galaxies.

    more » « less

    We use Fermi-LAT data to analyse the faint gamma-ray source located at the centre of the Sagittarius (Sgr) dwarf spheroidal galaxy. In the 4FGL-DR3 catalogue, this source is associated with the globular cluster, M54. We investigate the spectral energy distribution and spatial extension of this source, with the goal of testing two hypotheses: (1) the emission is due to millisecond pulsars within M54, or (2) the emission is due to annihilating dark matter from the Sgr halo. For the pulsar interpretation, we consider a two-component model which describes both the lower-energy magnetospheric emission and possible high-energy emission arising from inverse Compton scattering. We find that this source has a point-like morphology at low energies, consistent with magnetospheric emission, and find no evidence for a higher-energy component. For the dark matter interpretation, we find the signal favours a dark matter mass of mχ = 29.6 ± 5.8 GeV and an annihilation cross section of $\sigma v = (2.1 \pm 0.59) \times 10^{-26} \, \text{cm}^3$ s−1 for the $b \bar{b}$ channel (or mχ = 8.3 ± 3.8 GeV and $\sigma v = (0.90 \pm 0.25) \times 10^{-26} \, \text{cm}^3$ s−1 for the τ+τ− channel), when adopting a J-factor of $J=10^{19.6} \, \text{GeV}^2 \, \text{cm}^{-5}$. This parameter space is consistent with gamma-ray constraints from other dwarf galaxies and with dark matter interpretations of the Galactic Centre Gamma-Ray Excess.

    more » « less
  5. Abstract

    In this paper, we present a chemical and kinematic analysis of two ultrafaint dwarf galaxies (UFDs), Aquarius II (Aqu II) and Boötes II (Boo II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo II (12), and the largest sample of red giant branch members with metallicity measurements for Aqu II (eight). In both UFDs, over 80% of targets selected based on Gaia proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu II, we measure a systemic velocity of −65.3 ± 1.8 km s−1and a metallicity of [Fe/H] =2.570.17+0.17. When compared with previous measurements, these values display a ∼6 km s−1difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo II, we measure a systemic velocity of130.41.1+1.4km s−1, more than 10 km s−1different from the literature, a metallicity almost 1 dex smaller at [Fe/H] =2.710.10+0.11, and a velocity dispersion 3 times smaller atσvhel=2.91.2+1.6km s−1. Additionally, we derive systemic proper-motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark-matter-dominated nature of Aqu II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low-velocity dispersion and corresponding low dark matter density.

    more » « less
    Free, publicly-accessible full text available June 1, 2024
  6. Abstract

    We combine Gaia early data release 3 astrometry with accurate photometry and utilize a probabilistic mixture model to measure the systemic proper motion of 52 dwarf spheroidal (dSph) satellite galaxies of the Milky Way (MW). For the 46 dSphs with literature line-of-sight velocities we compute orbits in both a MW and a combined MW + Large Magellanic Cloud (LMC) potential and identify Car II, Car III, Hor I, Hyi I, Phx II, and Ret II as likely LMC satellites. 40% of our dSph sample has a >25% change in pericenter and/or apocenter with the MW + LMC potential. For these orbits, we use a Monte Carlo sample for the observational uncertainties for each dSph and the uncertainties in the MW and LMC potentials. We predict that Ant II, Boo III, Cra II, Gru II, and Tuc III should be tidally disrupting by comparing each dSph's average density relative to the MW density at its pericenter. dSphs with large ellipticity (CVn I, Her, Tuc V, UMa I, UMa II, UMi, Wil 1) show a preference for their orbital direction to align with their major axis even for dSphs with large pericenters. We compare the dSph radial orbital phase to subhalos in MW-likeN-body simulations and infer that there is not an excess of satellites near their pericenter. With projections of future Gaia data releases, we find that dSph's orbital precision will be limited by uncertainties in the distance and/or MW potential rather than in proper motion precision. Finally, we provide our membership catalogs to enable community follow-up.

    more » « less

    We present the results of fitting a flexible stellar stream density model to a collection of thirteen streams around the Milky Way, using photometric data from DES, DECaLS, and Pan-STARRS. We construct density maps for each stream and characterize their tracks on the sky, width, and distance modulus curves along the length of each stream. We use these measurements to compute lengths and total luminosities of streams and identify substructures. Several streams show prominent substructures, such as stream broadening, gaps, large deviations of stream tracks, and sharp changes in stream densities. Examining the group of streams as a population, as expected we find that streams with globular cluster progenitors are typically narrower than those with dwarf galaxy progenitors, with streams around 100 pc wide showing overlap between the two populations. We also note the average luminosity of globular cluster streams is significantly lower than the typical luminosity of intact globular clusters. The likely explanation is that observed globular cluster streams preferentially come from lower luminosity and lower density clusters. The stream measurements done in a uniform manner presented here will be helpful for more detailed stream studies such as identifying candidate stream members for spectroscopic follow up and stellar stream dynamical modelling.

    more » « less

    We present new MMT/Hectochelle spectroscopic measurements for 257 stars observed along the line of sight to the ultrafaint dwarf galaxy Triangulum II (Tri II). Combining results from previous Keck/DEIMOS spectroscopy, we obtain a sample that includes 16 likely members of Tri II, with up to 10 independent redshift measurements per star. To this multi-epoch kinematic data set, we apply methodology that we develop in order to infer binary orbital parameters from sparsely sampled radial velocity curves with as few as two epochs. For a previously identified (spatially unresolved) binary system in Tri II, we infer an orbital solution with period $296.0_{-3.3}^{+3.8} \rm ~ d$, semimajor axis $1.12^{+0.41}_{-0.24}\rm ~au$, and systemic velocity $-380.0 \pm 1.7 \rm ~km ~s^{-1}$ that we then use in the analysis of Tri II’s internal kinematics. Despite this improvement in the modelling of binary star systems, the current data remain insufficient to resolve the velocity dispersion of Tri II. We instead find a 95 per cent confidence upper limit of $\sigma _{v} \lesssim 3.4 \rm ~km~s^{-1}$.

    more » « less
  9. Abstract

    We use a geometric method to derive (two-dimensional) separation functions among pairs of objects within populations of specified position functiondN/dR. We present analytic solutions for separation functions corresponding to a uniform surface density within a circular field, a Plummer sphere (viewed in projection), and the mixture thereof—including contributions from binary objects within both subpopulations. These results enable inferences about binary object populations via direct modeling of object position and pair separation data, without resorting to standard estimators of the two-point correlation function. Analyzing mock data sets designed to mimic known dwarf spheroidal galaxies, we demonstrate the ability to recover input properties including the number of wide binary star systems and, in cases where the number of resolved binary pairs is assumed to be ≳a few hundred, characteristic features (e.g., steepening and/or truncation) of their separation function. Combined with forthcoming observational capabilities, this methodology opens a window onto the formation and/or survival of wide binary populations in dwarf galaxies, and offers a novel probe of inferred dark matter substructure on the smallest galactic scales.

    more » « less

    We use Gaia EDR3 data to identify stars associated with six classical dwarf spheroidals (dSphs) (Draco, Ursa Minor, Sextans, Sculptor, Fornax, Carina) at their outermost radii, beyond their nominal King stellar limiting radius. For all of the dSphs examined, we find radial velocity matches with stars residing beyond the King limiting radius and with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability (four in Draco, two in Ursa Minor, eight in Sextans, two in Sculptor, 12 in Fornax, and five in Carina), indicating that these stars are associated with their respective dSphs at high probability. We compare the positions of our candidate ‘extra-tidal’ stars with the orbital tracks of the galaxies, and identify stars, both with and without radial velocity matches, that are consistent with lying along the orbital track of the satellites. However, given the small number of candidate stars, we cannot make any conclusive statements about the significance of these spatially correlated stars. Cross matching with publicly available catalogues of RR Lyrae, we find one RR Lyrae candidate with ${\gt}50{{\ \rm per\ cent}}$ astrometric probability outside the limiting radius in each of Sculptor and Fornax, two such candidates in Draco, nine in Ursa Minor, seven in Sextans, and zero in Carina. Follow-up spectra on all of our candidates, including possible metallicity information, will help confirm association with their respective dSphs, and could represent evidence for extended stellar haloes or tidal debris around these classical dSphs.

    more » « less