skip to main content

Search for: All records

Award ID contains: 1813881

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    As an introduction of a kinematic survey of Magellanic Cloud (MC) star clusters, we report on the dynamical masses and mass-to-light ratios (M/L) of NGC 419 (Small Magellanic Cloud) and NGC 1846 (Large Magellanic Cloud). We have obtained more than one hundred high-resolution stellar spectra in and around each cluster using the multi-object spectrograph M2FS on the Magellan/Clay Telescope. Line-of-sight velocities and positions of the stars observed in each cluster were used as input to an expectation-maximization algorithm used to estimate cluster membership probabilities, resulting in samples of 46 and 52 likely members (PM ≥ 50 per cent) in NGC 419 and NGCmore »1846, respectively. This process employed single-mass King models constrained by the structural parameters of the clusters and provided self-consistent dynamical mass estimates for both clusters. Our best-fitting results show that NGC 419 has a projected central velocity dispersion of $2.44^{+0.37}_{-0.21}$ km s−1, corresponding to a total mass of $7.6^{+2.5}_{-1.3}\times 10^4\ {\rm M}_{\odot }$ and V-band M/L ratio of $0.22^{+0.08}_{-0.05}$ in solar units. For NGC 1846, the corresponding results are $2.04^{+0.28}_{-0.24}$ km s−1, $5.4^{+1.5}_{-1.4}\times 10^4\ {\rm M}_{\odot }$, and $0.32^{+0.11}_{-0.11}$. The mean metallicities of NGC 419 and NGC 1846 are found to be $\rm [Fe/H]=-0.84\pm 0.19$ and −0.70 ± 0.08, respectively, based on the spectra of likely cluster members. We find marginal statistical evidence of rotation in both clusters, though in neither cluster does rotation alter our mass estimates significantly. We critically compare our findings with those of previous kinematic studies of these two clusters in order to evaluate the consistency of our observational results and analytic tools.

    « less

    We introduce the southern stellar stream spectroscopy survey (S5), an on-going program to map the kinematics and chemistry of stellar streams in the southern hemisphere. The initial focus of S5 has been spectroscopic observations of recently identified streams within the footprint of the dark energy survey (DES), with the eventual goal of surveying streams across the entire southern sky. Stellar streams are composed of material that has been tidally striped from dwarf galaxies and globular clusters and hence are excellent dynamical probes of the gravitational potential of the Milky Way, as well as providing a detailed snapshot of itsmore »accretion history. Observing with the 3.9 m Anglo-Australian Telescope’s 2-degree-Field fibre positioner and AAOmega spectrograph, and combining the precise photometry of DES DR1 with the superb proper motions from Gaia DR2, allows us to conduct an efficient spectroscopic survey to map these stellar streams. So far S5 has mapped nine DES streams and three streams outside of DES; the former are the first spectroscopic observations of these recently discovered streams. In addition to the stream survey, we use spare fibres to undertake a Milky Way halo survey and a low-redshift galaxy survey. This paper presents an overview of the S5 program, describing the scientific motivation for the survey, target selection, observation strategy, data reduction, and survey validation. Finally, we describe early science results on stellar streams and Milky Way halo stars drawn from the survey. Updates on S5, including future public data releases, can be found at

    « less
  3. ABSTRACT Until the recent advent of Gaia Data Release 2 (DR2) and deep multi-object spectroscopy, it has been difficult to obtain 6D phase space information for large numbers of stars beyond 4 kpc, in particular towards the Galactic Centre, where dust and crowding are significant. We combine line-of-sight velocities from the Abundances and Radial velocity Galactic Origins Survey (ARGOS) with proper motions from Gaia DR2 to obtain a sample of ∼7000 red clump stars with 3D velocities. We perform a large-scale stellar kinematics study of the Milky Way bulge to characterize the bulge velocity ellipsoids in 20 fields. The tilt ofmore »the major-axis of the velocity ellipsoid in the radial-longitudinal velocity plane, or vertex deviation, is characteristic of non-axisymmetric systems and a significant tilt is a robust indicator of non-axisymmetry or bar presence. We compare the observations to the predicted kinematics of an N-body boxy-bulge model formed from dynamical instabilities. In the model, the lv values are strongly correlated with the angle (α) between the bulge major-axis and the Sun-Galactic centre line of sight. We use a maximum likelihood method to obtain an independent measurement of α, from bulge stellar kinematics alone, performing a robust error analysis. The most likely value of α given our model is α = (29 ± 3)○, with an additional systematic uncertainty due to comparison with one specific model. In Baade’s window, the metal-rich stars display a larger vertex deviation (lv = −40○) than the metal-poor stars (lv = 10○) but we do not detect significant lv−metallicity trends in the other fields.« less
  4. Abstract The S2 stream is a kinematically cold stream that is plunging downwards through the Galactic disc. It may be part of a hotter and more diffuse structure called the Helmi stream. We present a multi-instrument chemical analysis of the stars in the metal-poor S2 stream using both high- and low-resolution spectroscopy, complemented with a re-analysis of the archival data to give a total sample of 62 S2 members. Our high-resolution program provides α-elements (C, Mg, Si, Ca and Ti), iron-peak elements (V, Cr, Mn, Fe, Ni), n-capture process elements (Sr, Ba) and other elements such as Li, Na, Al,more »and Sc for a subsample of S2 objects. We report coherent abundance patterns over a large metallicity spread (∼1 dex) confirming that the S2 stream was produced by a disrupted dwarf galaxy. The combination of S2’s α-elements displays a mildly decreasing trend with increasing metallicity which can be tentatively interpreted as a “knee” at [Fe/H]<−2. At the low metallicity end, the n-capture elements in S2 may be dominated by r-process production however several stars are Ba-enhanced, but unusually poor in Sr. Moreover, some of the low-[Fe/H] stars appear to be carbon-enhanced. We interpret the observed abundance patterns with the help of chemical evolution models that demonstrate the need for modest star-formation efficiency and low wind efficiency confirming that the progenitor of S2 was a primitive dwarf galaxy.« less
  5. ABSTRACT We report the result of searching for globular clusters (GCs) around 55 Milky Way (MW) satellite dwarf galaxies within the distance of 450 kpc from the Galactic Centre except for the Large and Small Magellanic Clouds and the Sagittarius dwarf. For each dwarf, we analyse the stellar distribution of sources in Gaia DR2, selected by magnitude, proper motion, and source morphology. Using the kernel density estimation of stellar number counts, we identify 11 possible GC candidates. Cross-matched with existing imaging data, all 11 objects are known either GCs or galaxies and only Fornax GC 1–6 among them are associated withmore »the targeted dwarf galaxy. Using simulated GCs, we calculate the GC detection limit $M_{\rm V}^{\rm lim}$ that spans the range from $M_{\rm V}^{\rm lim}\sim -7$ for distant dwarfs to $M_{\rm V}^{\rm lim}\sim 0$ for nearby systems. Assuming a Gaussian GC luminosity function, we compute that the completeness of the GC search is above 90 per cent for most dwarf galaxies. We construct the 90 per cent credible intervals/upper limits on the GC specific frequency SN of the MW dwarf galaxies: 12 < SN < 47 for Fornax, SN < 20 for the dwarfs with −12 < MV < −10, SN < 30 for the dwarfs with −10 < MV < −7, and SN < 90 for the dwarfs with MV > −7. Based on SN, we derive the probability of galaxies hosting GCs given their luminosity, finding that the probability of galaxies fainter than MV = −9 to host GCs is lower than 0.1.« less