skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: pH-Response of polycation/Ti 3 C 2 T x MXene layer-by-layer assemblies for use as resistive sensors
The importance and widespread need for accurate pH monitoring necessitates the fabrication of new pH sensors with high sensitivity that can be used in a variety of environments. However, typical pH sensors have certain limitations ( e.g. , glass electrodes are fragile and require consistent upkeep, colorimetric pH strips are single use and inaccurate). Herein, we examine the pH-response of multilayers consisting of Ti 3 C 2 T x nanosheets and polycations fabricated using layer-by-layer (LbL) assembly. The MXene sheets themselves are pH-responsive due to their hydroxyl surface groups, and this effect may be amplified with the choice of an appropriate polycation. Specifically, the performance of multilayers assembled with the strong electrolyte poly (diallyldimethylammonium) (PDADMA) or pH-sensitive branched polyethylenimine (BPEI) is compared. As expected, the use of a pH-sensitive constituent leads to a 464% increase in pH sensitivity (116 kΩ pH −1 unit vs. 25 kΩ pH −1 unit) as compared to PDADMA. This is due to the conformational changes that BPEI undergoes with (de)protonation as pH changes. Further comparisons with reduced graphene oxide (rGO), which is far less pH responsive, confirm the unique pH responsivity of MXene nanosheets themselves. The ability to enhance response to particular stimuli by changing the constituent polycation demonstrates promise for future use of MXenes in resistive sensors for a variety of stimuli.  more » « less
Award ID(s):
1760859
PAR ID:
10162622
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Molecular Systems Design & Engineering
Volume:
5
Issue:
1
ISSN:
2058-9689
Page Range / eLocation ID:
366 to 375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stimuli-responsive multilayer hydrogels have opened new opportunities to design hierarchically organized networks with properties controlled at the nanoscale. These multilayer materials integrate structural, morphological, and compositional versatility provided by alternating layer-bylayer polymer deposition with the capability for dramatic and reversible changes in volumes upon environmental triggers, a characteristic of chemically crosslinked responsive networks. Despite their intriguing potential, there has been limited knowledge about the structure−property relationships of multilayer hydrogels, partly because of the challenges in regulating network structural organization and the limited set of the instrumental pool to resolve structure and properties at nanometer spatial resolution. This Feature Article highlights our recent studies on advancing assembly technologies, fundamentals, and applications of multilayer hydrogels. The fundamental relationships among synthetic strategies, chemical compositions, and hydrogel architectures are discussed, and their impacts on stimuli-induced volume changes, morphology, and mechanical responses are presented. We present an overview of our studies on thin multilayer hydrogel coatings, focusing on controlling and quantifying the degree of layer intermixing, which are crucial issues in the design of hydrogels with predictable properties. We also uncover the behavior of stratified “multicompartment” hydrogels in response to changes in pH and temperature. We summarize the mechanical responses of free-standing multilayer hydrogels, including planar thin coatings and films with closed geometries such as hollow microcapsules and nonhollow hydrogel microparticles with spherical and nonspherical shapes. Finally, we will showcase potential applications of pH- and temperature-sensitive multilayer hydrogels in sensing and drug delivery. The knowledge about multilayer hydrogels can advance the rational design of polymer networks with predictable and well-tunable properties, contributing to modern polymer science and broadening hydrogel applications. 
    more » « less
  2. Abstract Structural color arises from light scattering rather than organic pigments and can be found in Nature, such as in bird feathers and butterfly wings. Synthetic materials can mimic Nature by leveraging materials with contrasting optical characteristics by controlling each materials’ spatial arrangement in a heterostructure. Two-dimensional MXene nanosheets are particularly interesting due to their unique optical properties, but MXenes have not been used directly as a structural colorant because it is challenging to control the spatial placement of MXenes at the nanometer level. Here, we report the emergence of structural color in layer-by-layer (LbL) assemblies of Ti3C2TzMXene nanosheets and polyelectrolyte heterostructures with controlled block thicknesses. The block thickness and spatial placement of MXene are controlled by the assembly’s salt concentration and number of layer pairs. This work demonstrates that optical characteristics of MXene/polyelectrolyte heterostructures depend on MXene content and placement, while deepening the understanding of MXenes within structural color films. 
    more » « less
  3. Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation. 
    more » « less
  4. Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi‐responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol‐formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli‐responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi‐stimuli‐responsive plasmonic system. 
    more » « less
  5. A vision for soft, autonomous materials entails synthesis of multiple senses in multifunctional materials where material response requires sensitivity to external stimuli. Stimuli-responsive hydrogels are of particular interest for optically induced mechanical response due to the ability to transform external stimuli into large, reversible shape change. Specifically, temperature-responsive hydrogels are broadly used and can be designed to achieve deformation through the photothermal effect as a result of surface plasmonic resonance of gold nanoparticles. Here, a multi-material stimuli-responsive hydrogel network with embedded gold nanoparticles is demonstrated in a unit cell pattern with anisotropic swelling behavior in response to visible light. Reversible, anisotropic swelling leads to bending motion that contributes to the development of soft, autonomous materials. 
    more » « less