skip to main content


Title: If I Value the Test Do I Feel More or Less Emotion? Exploration of Value and Emotions
Award ID(s):
1661100
NSF-PAR ID:
10162661
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Conference on Motivation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a method to use long‐range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 792JCHand3JCHvalues collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE‐3D (computer‐assisted 3D structure elucidation) protocol. In addition to the most commonly used3JCHcoupling constants, the subset of 322JCHvalues alone showed an excellent degree of configuration selection. The study is mainly based on comparison of DFT‐calculated2,3JCHvalues with experimental ones, critical for the case of2JCH. But the configuration selection also works well using3JCHvalues predicted from a semi‐empirical Karplus‐based equation limited to H−C−C−C fragments. The robustness, shown using strychnine as a proof of concept, makes theJ‐based CASE‐3D analysis a viable option for the application in fields such as peptide and carbohydrate research, organic synthesis, natural‐product identification and analysis, as well as medicinal chemistry.

     
    more » « less
  2. Abstract

    We present a method to use long‐range CH coupling constants to derive the correct diastereoisomer from the molecular constitution of small molecules. A set of 792JCHand3JCHvalues collected from a single HSQMBC experiment on a sample of strychnine were used in the CASE‐3D (computer‐assisted 3D structure elucidation) protocol. In addition to the most commonly used3JCHcoupling constants, the subset of 322JCHvalues alone showed an excellent degree of configuration selection. The study is mainly based on comparison of DFT‐calculated2,3JCHvalues with experimental ones, critical for the case of2JCH. But the configuration selection also works well using3JCHvalues predicted from a semi‐empirical Karplus‐based equation limited to H−C−C−C fragments. The robustness, shown using strychnine as a proof of concept, makes theJ‐based CASE‐3D analysis a viable option for the application in fields such as peptide and carbohydrate research, organic synthesis, natural‐product identification and analysis, as well as medicinal chemistry.

     
    more » « less
  3. Abstract

    Adaptive multiple testing with covariates is an important research direction that has gained major attention in recent years. It has been widely recognised that leveraging side information provided by auxiliary covariates can improve the power of false discovery rate (FDR) procedures. Currently, most such procedures are devised with p-values as their main statistics. However, for two-sided hypotheses, the usual data processing step that transforms the primary statistics, known as p-values, into p-values not only leads to a loss of information carried by the main statistics, but can also undermine the ability of the covariates to assist with the FDR inference. We develop a p-value based covariate-adaptive (ZAP) methodology that operates on the intact structural information encoded jointly by the p-values and covariates. It seeks to emulate the oracle p-value procedure via a working model, and its rejection regions significantly depart from those of the p-value adaptive testing approaches. The key strength of ZAP is that the FDR control is guaranteed with minimal assumptions, even when the working model is misspecified. We demonstrate the state-of-the-art performance of ZAP using both simulated and real data, which shows that the efficiency gain can be substantial in comparison with p-value-based methods. Our methodology is implemented in the R package zap.

     
    more » « less