‘Seeing’ the Temperature Inside the Part during the Powder Bed Fusion Process
Powder Bed Fusion (PBF) is a type of Additive Manufacturing (AM) technology that builds parts in a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a laser or electron beam heat source. The technology has become widespread, however the demand is growing for closed loop process monitoring and control in PBF systems to replace the open loop architectures that exist today. This paper demonstrates the simulated efficacy of applying closed-loop state estimation to the problem of monitoring temperature fields within parts during the PBF build process. A simplified LTI model of PBF thermal physics with the properties of stability, controllability and observability is presented. An Ensemble Kalman Filter is applied to the model. The accuracy of this filters’ predictions are assessed in simulation studies of the temperature evolution of various test parts when subjected to simulated laser heat input. The significant result of this study is that the filter supplied predictions that were about 2.5x more accurate than the open loop model in these simulation studies.
- Award ID(s):
- 1738723
- Publication Date:
- NSF-PAR ID:
- 10162669
- Journal Name:
- Proceedings of the 2019 Annual International Solid Freeform Fabrication Symposium
- Sponsoring Org:
- National Science Foundation
More Like this
-
Powder Bed Fusion (PBF) faces ongoing challenges in the areas of process monitoring and control. Standard methods for alleviating these issues rely on machine learning, which requires costly and time-consuming training data. Expense is compounded by the perceived necessity of using sensors with extremely high resolutions. This research avoids this cost by employing an Ensemble Kalman Filter (EnKF), which uses measured data to correct physics-based model predictions of the process, to monitor part internal temperature fields during building. This work tests EnKF performance, in simulation, for two model architectures, using simulated cameras of varying resolution as our measuring instruments. Crucially,more »
-
Powder Bed Fusion (PBF) is a type of additive manufacturing process that builds parts out of metal powder in a layerwise fashion. Quality control (QC) remains an unsolved problem for PBF. Data-driven models of PBF are expensive to train and maintain, in terms of materials and machine time, because they are sensitive to changes in processing conditions.The length and time scale discrepancies of the process make physics-based modeling impractical to implement. We propose monitoring PBF with an Ensemble Kalman Filter (EnKF). The EnKF combines the computational efficiency of datadriven models with the flexibility of physics-based models, while mitigating the flawsmore »
-
Abstract A high-precision additive manufacturing (AM) process, powder bed fusion (PBF) has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While finite element modeling and closed-loop control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. This paper builds a first-instance closed-loop simulation framework by integrating high-fidelity finite element modeling with feedback controls originally developed for general mechatronics systems. By utilizing the output signals (e.g., melt pool width) retrieved from the finite elementmore »
-
Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatial distribution of heat, called the heat flux or thermal history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the heat flux in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metalmore »
-
Despite its potential to overcome the design and processing barriers of traditional subtractive and formative manufacturing techniques, the use of laser powder bed fusion (LPBF) metal additive manufacturing is currently limited due to its tendency to create flaws. A multitude of LPBF-related flaws, such as part-level deformation, cracking, and porosity are linked to the spatiotemporal temperature distribution in the part during the process. The temperature distribution, also called the thermal history, is a function of several factors encompassing material properties, part geometry and orientation, processing parameters, placement of supports, among others. These broad range of factors are difficult and expensivemore »