skip to main content


Title: On the Controllability and Observability of Temperature States in Metal Powder Bed Fusion
Abstract Powder bed fusion (PBF) is an additive manufacturing (AM) process that builds parts in a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a laser or electron beam heat source. Despite its transformational manufacturing capabilities, PBF is currently controlled in the open loop and there is significant demand to apply closed-loop process monitoring and control to the thermal management problem. This paper introduces a controls theoretic analysis of the controllability and observability of temperature states in PBF. The main contributions of the paper are proofs that certain configurations of PBF are classically controllable and observable, but that these configurations are not strongly structurally controllable and observable. These results are complemented by case studies, demonstrating the energy requirement of state estimation under various, industry relevant PBF configurations. These fundamental characterizations of controllability and observability provide a basis for realizing closed-loop PBF temperature estimation.  more » « less
Award ID(s):
1738723
NSF-PAR ID:
10434750
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
145
Issue:
3
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Powder Bed Fusion (PBF) is a type of Additive Manufacturing (AM) technology that builds parts in a layer-by-layer fashion out of a bed of metal powder via the selective melting action of a laser or electron beam heat source. The technology has become widespread, however the demand is growing for closed loop process monitoring and control in PBF systems to replace the open loop architectures that exist today. This paper demonstrates the simulated efficacy of applying closed-loop state estimation to the problem of monitoring temperature fields within parts during the PBF build process. A simplified LTI model of PBF thermal physics with the properties of stability, controllability and observability is presented. An Ensemble Kalman Filter is applied to the model. The accuracy of this filters’ predictions are assessed in simulation studies of the temperature evolution of various test parts when subjected to simulated laser heat input. The significant result of this study is that the filter supplied predictions that were about 2.5x more accurate than the open loop model in these simulation studies. 
    more » « less
  2. null (Ed.)
    Abstract A high-precision additive manufacturing (AM) process, powder bed fusion (PBF) has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While finite element modeling and closed-loop control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. This paper builds a first-instance closed-loop simulation framework by integrating high-fidelity finite element modeling with feedback controls originally developed for general mechatronics systems. By utilizing the output signals (e.g., melt pool width) retrieved from the finite element model (FEM) to update directly the control signals (e.g., laser power) sent to the model, the proposed closed-loop framework enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in- and cross-layer thermomechanical interactions. From there, we build a repetitive control (RC) algorithm to attenuate variations of the melt pool width. 
    more » « less
  3. null (Ed.)
    Abstract

    Powder bed fusion (PBF) additive manufacturing has enabled unmatched agile manufacturing of a wide range of products from engine components to medical implants. While high-fidelity finite element modeling and feedback control have been identified key for predicting and engineering part qualities in PBF, existing results in each realm are developed in opposite computational architectures wildly different in time scale. Integrating both realms, this paper builds a first-instance closed-loop simulation framework by utilizing the output signals retrieved from the finite element model (FEM) to directly update the control signals sent to the model. The proposed closed-loop simulation enables testing the limits of advanced controls in PBF and surveying the parameter space fully to generate more predictable part qualities. Along the course of formulating the framework, we verify the FEM by comparing its results with experimental and analytical solutions and then use the FEM to understand the melt-pool evolution induced by the in-layer thermomechanical interactions. From there, we build a repetitive control algorithm to greatly attenuate variations of the melt pool width.

     
    more » « less
  4. Informed decision-making for sustainable manufacturing requires accurate manufacturing process environmental impact models with uncertainty quantification (UQ). For emerging manufacturing technologies, there is often insufficient process data available to derive accurate data-driven models. This paper explores an alternative mechanistic modeling approach using easy-to-access data from a given machine to perform Bayesian inference and reduce the uncertainty of model parameters. First, we derive mechanistic models of the cumulative energy demand (CED) for making aluminum (AlSi10) and nylon (PA12) parts using laser powder bed fusion (L-PBF). Initial parametric uncertainty is assigned to the model inputs informed by literature reviews and interviews with industry experts. Second, we identify the most critical sources of uncertainty using variance-based global sensitivity analyses; therefore, reducing the dimension of the problem. For metal and polymer L-PBF, critical uncertainty is related to the adiabatic efficiency of the process (a measure of the efficiency with which the laser energy is used to fuse the powder) and the recoating time per layer between laser scans. Data pertinent to both of these parameters include the part geometry (height and volume) and total build time. Between three and eight data points on part geometry and build time were collected on two different L-PBF machines and Bayesian inference was performed to reduce the uncertainty of the adiabatic efficiency and recoating time per layer on each machine. This approach was validated by subsequently taking direct parameter measurements on these machines during operation. The delivered electricity uncertainty is reduced by 40-70% after performing inference, highlighting the potential to construct accurate energy and environmental impact models of manufacturing processes using small easy-to-access datasets without interfering with the operations of the manufacturing facility. 
    more » « less
  5. Powder Bed Fusion (PBF) is a type of additive manufacturing process that builds parts out of metal powder in a layerwise fashion. Quality control (QC) remains an unsolved problem for PBF. Data-driven models of PBF are expensive to train and maintain, in terms of materials and machine time, because they are sensitive to changes in processing conditions.The length and time scale discrepancies of the process make physics-based modeling impractical to implement. We propose monitoring PBF with an Ensemble Kalman Filter (EnKF). The EnKF combines the computational efficiency of datadriven models with the flexibility of physics-based models, while mitigating the flaws of either method. We validate EnKF performance for linear process models, using finite element method data in place of measured experimental data. We show that the EnKF can reduce the error signal 2-norm and 1-norm relative to the open loop model by as much as 75%. 
    more » « less