- Award ID(s):
- 1830734
- Publication Date:
- NSF-PAR ID:
- 10163191
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 43
- Page Range or eLocation-ID:
- 21469 to 21477
- ISSN:
- 0027-8424
- Sponsoring Org:
- National Science Foundation
More Like this
-
Zerboni, A (Ed.)The application of lidar remote-sensing technology has revolutionized the practice of settlement and landscape archaeology, perhaps nowhere more so than in the Maya lowlands. This contribution presents a substantial lidar dataset from the Puuc region of Yucatan, Mexico, a cultural subregion of the ancient Maya and a distinct physiographic zone within the Yucatan peninsula. Despite the high density of known sites, no large site has been fully surveyed, and little is known about intersite demography. Lidar technology allows determination of settlement distribution for the first time, showing that population was elevated but nucleated, although without any evidence of defensive features. Population estimates suggest a region among the most densely settled within the Maya lowlands, though hinterland levels are modest. Lacking natural bodies of surface water, the ancient Puuc inhabitants relied upon various storage technologies, primarily chultuns (cisterns) and aguadas (natural or modified reservoirs for potable water). Both are visible in the lidar imagery, allowing calculation of aguada capacities by means of GIS software. The imagery also demonstrates an intensive and widespread stone working industry. Ovens visible in the imagery were probably used for the production of lime, used for construction purposes and perhaps also as a softening agent for maize.more »
-
In landscapes that support economic and cultural activities, human communities actively manage environments and environmental change at a variety of spatial scales that complicate the effects of continental-scale climate. Here, we demonstrate how hydrological conditions were modified by humans against the backdrop of Holocene climate change in southwestern Amazonia. Paleoecological investigations (phytoliths, charcoal, pollen, diatoms) of two sediment cores extracted from within the same permanent wetland, ∼22 km apart, show a 1,500-y difference in when the intensification of land use and management occurred, including raised field agriculture, fire regime, and agroforestry. Although rising precipitation is well known during the mid to late Holocene, human actions manipulated climate-driven hydrological changes on the landscape, revealing differing histories of human landscape domestication. Environmental factors are unable to account for local differences without the mediation of human communities that transformed the region to its current savanna/forest/wetland mosaic beginning at least 3,500 y ago. Regional environmental variables did not drive the choices made by farmers and fishers, who shaped these local contexts to better manage resource extraction. The savannas we observe today were created in the post-European period, where their fire regime and structural diversity were shaped by cattle ranching.
-
Abstract
Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred meters -
Abstract Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa 1–4 . Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations 3,5 . Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80–20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalizationmore »
-
Green Lake is the deepest natural inland lake in Wisconsin, with a maximum depth of about 72 meters. In the early 1900s, the lake was believed to have very good water quality (low nutrient concentrations and good water clarity) with low dissolved oxygen (DO) concentrations occurring in only the deepest part of the lake. Because of increased phosphorus (P) inputs from anthropogenic activities in its watershed, total phosphorus (TP) concentrations in the lake have increased; these changes have led to increased algal production and low DO concentrations not only in the deepest areas but also in the middle of the water column (metalimnion). The U.S. Geological Survey has routinely monitored the lake since 2004 and its tributaries since 1988. Results from this monitoring led the Wisconsin Department of Natural Resources (WDNR) to list the lake as impaired because of low DO concentrations in the metalimnion, and they identified elevated TP concentrations as the cause of impairment. As part of this study by the U.S. Geological Survey, in cooperation with the Green Lake Sanitary District, the lake and its tributaries were comprehensively sampled in 2017–18 to augment ongoing monitoring that would further describe the low DO concentrations in the lake (especiallymore »