skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring the Benefits and Challenges of Data Physicalization
Data physicalization has emerged as a new method to represent and interact with data physically rather than digitally. Physical representations afford visual analysis in comparable ways to traditional, desktopbased visualization by introducing new capabilities, such as facilitating tactile manipulation, accessible interactions, and immersion, that are beyond traditional 2D visualizations. However, physicalization has historically been a niche aspect of visualization research due to its unique challenges. This work discusses the current challenges and highlights three areas where data physicalization can aid existing research thrusts: broadening participation, supporting analytics, and promoting creative expression.  more » « less
Award ID(s):
2040489
PAR ID:
10484706
Author(s) / Creator(s):
Publisher / Repository:
CEUR Workshop Proceedings (CEUR-WS.org) ETIS 2022
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data physicalization has emerged as a new method to represent and interact with data physically rather than digitally. Physical representations afford visual analysis in comparable ways to traditional, desktop- based visualization by introducing new capabilities, such as facilitating tactile manipulation, accessible interactions, and immersion, that are beyond traditional 2D visualizations. However, physicalization has historically been a niche aspect of visualization research due to its unique challenges. This work discusses the current challenges and highlights three areas where data physicalization can aid existing research thrusts: broadening participation, supporting analytics, and promoting creative expression. 
    more » « less
  2. We present a design-based exploration of the potential to reinterpret glyph-based visualization of scalar fields on 3D surfaces, a traditional scientific visualization technique, as a data physicalization technique. Even with the best virtual reality displays, users often struggle to correctly interpret spatial relationships in 3D datasets; thus, we are motivated to understand the extent to which traditional scientific visualization methods can translate to physical media where users may simultaneously leverage their visual systems and tactile senses to, in theory, better understand and connect with the data of interest. This pictorial traces the process of our design for a specific user study experiment: (1) inspiration, (2) exploring the data physicalization design space, (3) prototyping with 3D printing, (4) applying the techniques to different synthetic datasets. We call our most recent and compelling visual/tactile design boxcars on potatoes, and the next step in the research is to run a user-based evaluation to elucidate how this design compares to several of the others pictured here. 
    more » « less
  3. Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption. 
    more » « less
  4. Data physicalizations (3D printed terrain models, anatomical scans, or even abstract data) can naturally engage both the visual and haptic senses in ways that are difficult or impossible to do with traditional planar touch screens and even immersive digital displays. Yet, the rigid 3D physicalizations produced with today's most common 3D printers are fundamentally limited for data exploration and querying tasks that require dynamic input (e.g., touch sensing) and output (e.g., animation), functions that are easily handled with digital displays. We introduce a novel style of hybrid virtual + physical visualization designed specifically to support interactive data exploration tasks. Working toward a "best of both worlds" solution, our approach fuses immersive AR, physical 3D data printouts, and touch sensing through the physicalization. We demonstrate that this solution can support three of the most common spatial data querying interactions used in scientific visualization (streamline seeding, dynamic cutting places, and world-in-miniature visualization). Finally, we present quantitative performance data and describe a first application to exploratory visualization of an actively studied supercomputer climate simulation data with feedback from domain scientists. 
    more » « less
  5. This paper introduces a lidar and radar meteorology science gateway deployed on the NSF Jetstream2 cloud, designed to enhance educational and research activities in atmospheric science. Utilizing the "Zero to JupyterHub with Kubernetes" workflow, we have created a science gateway that integrates lidar and radar meteorology software packages, notably the Lidar Radar Open Software Environment (LROSE). This integration allows users to execute applications directly from the JupyterLab terminal, streamlining the creation of datasets for further anal- ysis and visualization within Jupyter notebooks. By combining traditional command-line operations with modern Python-based tools for data analysis and visualization, this gateway provides a robust end-to-end solution that caters to both educational and research needs. The gateway has already been vital in facilitating LROSE instructional workshops and will see future enhancements such as GPU acceleration to boost performance. Our work demonstrates the significant potential of merging established scientific computing techniques with advanced Python environments, opening new avenues for computational science education and research. 
    more » « less