skip to main content

Title: A Duality Principle for Groups II: Multi-frames Meet Super-Frames
Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R more » d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d . « less
Authors:
; ; ; ;
Award ID(s):
1816608 1712602
Publication Date:
NSF-PAR ID:
10291409
Journal Name:
Journal of Fourier Analysis and Applications
Volume:
26
Issue:
6
ISSN:
1069-5869
Sponsoring Org:
National Science Foundation
More Like this
  1. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓more »𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s.« less
  2. A gr e at d e al of i nt er e st s urr o u n d s t h e u s e of tr a n s cr a ni al dir e ct c urr e nt sti m ul ati o n (t D C S) t o a u g m e nt c o g niti v e tr ai ni n g. H o w e v er, eff e ct s ar e i n c o n si st e nt a cr o s s st u di e s, a n d m et aa n al yti c e vi d e n c e i s mi x e d, e s p e ci all y f o r h e alt h y, y o u n g a d ult s. O n e m aj or s o ur c e of t hi s i n c o n si st e n c y i s i n di vi d u al diff er e n c e s a m o n g t h e pmore »arti ci p a nt s, b ut t h e s e diff er e n c e s ar e r ar el y e x a mi n e d i n t h e c o nt e xt of c o m bi n e d tr ai ni n g/ sti m ul ati o n st u di e s. I n a d diti o n, it i s u n cl e ar h o w l o n g t h e eff e ct s of sti m ul ati o n l a st, e v e n i n s u c c e s sf ul i nt er v e nti o n s. S o m e st u di e s m a k e u s e of f oll o w- u p a s s e s s m e nt s, b ut v er y f e w h a v e m e a s ur e d p erf or m a n c e m or e t h a n a f e w m o nt hs aft er a n i nt er v e nti o n. H er e, w e utili z e d d at a fr o m a pr e vi o u s st u d y of t D C S a n d c o g niti v e tr ai ni n g [ A u, J., K at z, B., B u s c h k u e hl, M., B u n arj o, K., S e n g er, T., Z a b el, C., et al. E n h a n ci n g w or ki n g m e m or y tr ai ni n g wit h tr a n scr a ni al dir e ct c urr e nt sti m ul ati o n. J o u r n al of C o g niti v e N e u r os ci e n c e, 2 8, 1 4 1 9 – 1 4 3 2, 2 0 1 6] i n w hi c h p arti ci p a nts tr ai n e d o n a w or ki n g m e m or y t as k o v er 7 d a y s w hil e r e c ei vi n g a cti v e or s h a m t D C S. A n e w, l o n g er-t er m f oll o w- u p t o a ss es s l at er p erf or m a n c e w a s c o n d u ct e d, a n d a d diti o n al p arti ci p a nt s w er e a d d e d s o t h at t h e s h a m c o n diti o n w a s b ett er p o w er e d. W e a s s e s s e d b a s eli n e c o g niti v e a bilit y, g e n d er, tr ai ni n g sit e, a n d m oti v ati o n l e v el a n d f o u n d si g nifi c a nt i nt er a cti o ns b et w e e n b ot h b as eli n e a bilit y a n d m oti v ati o n wit h c o n diti o n ( a cti v e or s h a m) i n m o d els pr e di cti n g tr ai ni n g g ai n. I n a d diti o n, t h e i m pr o v e m e nt s i n t h e a cti v e c o nditi o n v er s u s s h a m c o n diti o n a p p e ar t o b e st a bl e e v e n a s l o n g a s a y e ar aft er t h e ori gi n al i nt er v e nti o n. ■« less
  3. A s m or e e d u c at or s i nt e gr at e t h eir c urri c ul a wit h o nli n e l e ar ni n g, it i s e a si er t o cr o w d s o ur c e c o nt e nt fr o m t h e m. Cr o w ds o ur c e d t ut ori n g h a s b e e n pr o v e n t o r eli a bl y i n cr e a s e st u d e nt s’ n e xt pr o bl e m c orr e ct n e s s. I n t hi s w or k, w e c o n fir m e d t h e fi n di n g s of a pr e vi o u s st u d y i n t hi s ar e a, wit h str o n g er c o n fi d e n c e m ar gi n s t h amore »n pr e vi o u sl y, a n d r e v e al e d t h at o nl y a p orti o n of cr o w d s o ur c e d c o nt e nt cr e at or s h a d a r eli a bl e b e n e fit t o st ud e nt s. F urt h er m or e, t hi s w or k pr o vi d e s a m et h o d t o r a n k c o nt e nt cr e at or s r el ati v e t o e a c h ot h er, w hi c h w a s u s e d t o d et er mi n e w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e o v er all, a n d w hi c h c o nt e nt cr e at or s w er e m o st eff e cti v e f or s p e ci fi c gr o u p s of st u d e nt s. W h e n e x pl ori n g d at a fr o m Te a c h er A SSI S T, a f e at ur e wit hi n t h e A S SI S T m e nt s l e ar ni n g pl atf or m t h at cr o w d s o ur c e s t ut ori n g fr o m t e a c h er s, w e f o u n d t h at w hil e o v erall t hi s pr o gr a m pr o vi d e s a b e n e fit t o st u d e nt s, s o m e t e a c h er s cr e at e d m or e eff e cti v e c o nt e nt t h a n ot h er s. D e s pit e t hi s fi n di n g, w e di d n ot fi n d e vi d e n c e t h at t h e eff e cti v e n e s s of c o nt e nt r eli a bl y v ari e d b y st u d e nt k n o wl e d g e-l e v el, s u g g e sti n g t h at t h e c o nt e nt i s u nli k el y s uit a bl e f or p er s o n ali zi n g i n str u cti o n b a s e d o n st u d e nt k n o wl e d g e al o n e. T h e s e fi n di n g s ar e pr o mi si n g f or t h e f ut ur e of cr o w d s o ur c e d t ut ori n g a s t h e y h el p pr o vi d e a f o u n d ati o n f or a s s e s si n g t h e q u alit y of cr o w d s o ur c e d c o nt e nt a n d i n v e sti g ati n g c o nt e nt f or o p p ort u niti e s t o p er s o n ali z e st u d e nt s’ e d u c ati o n.« less
  4. Abstract We prove duality results for residual intersections that unify and complete results of van Straten,Huneke–Ulrich and Ulrich, and settle conjectures of van Straten and Warmt. Suppose that I is an ideal of codimension g in a Gorenstein ring,and {J\subset I} is an ideal with {s=g+t} generators such that {K:=J:I} has codimension s . Let {{\overline{I}}} be the image of I in {{\overline{R}}:=R/K} . In the first part of the paper we prove, among other things, that under suitable hypotheses on I , the truncated Rees ring {{\overline{R}}\oplus{\overline{I}}\oplus\cdots\oplus{\overline{I}}{}^{t+1}} is a Gorenstein ring, and that the modules {{\overline{I}}{}^{u}} and {{\overline{I}}{}^{t+1-u}} are dualto one another via the multiplication pairing into {{{\overline{I}}{}^{t+1}}\cong{\omega_{\overline{R}}}} . In the second part of the paper we study the analogue of residue theory, and prove that, when {R/K} is a finite-dimensional algebra over a field of characteristic 0 and certain other hypotheses are satisfied, the socle of {I^{t+1}/JI^{t}\cong{\omega_{R/K}}} is generated by a Jacobian determinant.
  5. We present optical photometry and spectroscopy of the Type II supernova ASASSN-14jb, together with Very Large Telescope (VLT) Multi Unit Spectroscopic Explorer (MUSE) integral field observations of its host galaxy and a nebular-phase spectrum. This supernova, in the nearby galaxy ESO 467-G051 ( z  = 0.006), was discovered and followed-up by the all-sky automated survey for supernovae (ASAS-SN). We obtained well-sampled las cumbres network (LCOGTN) B V g r i and Swift w 2 m 1 w 1 u b v optical, near-UV/optical light curves, and several optical spectra in the early photospheric phases. The transient ASASSN-14jb exploded ∼2 kpc above the star-forming disk of ESO 467-G051, an edge-on disk galaxy. The large projected distance from the disk of the supernova position and the non-detection of any H II region in a 1.4 kpc radius in projection are in conflict with the standard environment of core-collapse supernova progenitors and suggests the possible scenario that the progenitor received a kick in a binary interaction. We present analysis of the optical light curves and spectra, from which we derived a distance of 25 ± 2 Mpc using state-of-the-art empirical methods for Type II SNe, physical properties of the SN explosion ( 56 Ni mass, explosionmore »energy, and ejected mass), and properties of the progenitor; namely the progenitor radius, mass, and metallicity. Our analysis yields a 56 Ni mass of 0.0210  ±  0.0025  M ⊙ , an explosion energy of ≈0.25 × 10 51 ergs, and an ejected mass of ≈6  M ⊙ . We also constrained the progenitor radius to be R *  = 580  ±  28  R ⊙ which seems to be consistent with the sub-Solar metallicity of 0.3  ±  0.1  Z ⊙ derived from the supernova Fe II λ 5018 line. The nebular spectrum constrains strongly the progenitor mass to be in the range 10–12 M ⊙ . From the Spitzer data archive we detect ASASSN-14jb ≈330 days past explosion and we derived a total dust mass of 10 −4   M ⊙ from the 3.6 μ m and 4.5 μ m photometry. Using the F U V , N U V , B V g r i , K s , 3.6 μ m, and 4.5 μ m total magnitudes for the host galaxy, we fit stellar population synthesis models, which give an estimate of M *  ≈ 1 × 10 9   M ⊙ , an age of 3.2 Gyr, and a SFR ≈0.07  M ⊙ yr −1 . We also discuss the low oxygen abundance of the host galaxy derived from the MUSE data, having an average of 12 + log(O/H) = 8.27 +0.16 −0.20 using the O 3 N 2 diagnostic with strong line methods. We compared it with the supernova spectra, which is also consistent with a sub-Solar metallicity progenitor. Following recent observations of extraplanar H II regions in nearby edge-on galaxies, we derived the metallicity offset from the disk, being positive, but consistent with zero at 2 σ , suggesting enrichment from disk outflows. We finally discuss the possible scenarios for the unusual environment for ASASSN-14jb and conclude that either the in-situ star formation or runaway scenario would imply a low-mass progenitor, agreeing with our estimate from the supernova nebular spectrum. Regardless of the true origin of ASASSN-14jb, we show that the detailed study of the environment roughly agree with the stronger constraints from the observation of the transient.« less