skip to main content


Title: Green Plants, Red Glow – Looking at Chlorophyll’s Red Fluorescence as an Exercise in Exploring Photosynthesis, Agriculture, and Global Ecology
Photosynthesis can be challenging for instructors to teach and uninteresting for students to learn, but this shouldn't be the case. An activity developed by middle-school educators and university scientists lets students see how red light emitted from sunlit plants is captured by satellites to measure global photosynthesis. In plants, most of the absorbed light energy is channeled into photosynthesis, and the tiny amount that is emitted as red fluorescence is not visible by naked eye but is detectable by satellites. When chlorophyll is removed from plants into a solution – uncoupled from the photosynthetic apparatus – chlorophyll still is green and absorbs light, but the absorbed light energy has nowhere to go, and a large red glow is visible. In a readily accessible 1-hour middle-school classroom activity, students extract chlorophyll from spinach using rubbing alcohol (91% isopropyl alcohol) and then observe the abundant red fluorescence upon illumination with a flashlight. This simple observation of the red glow (fluorescence) from chlorophyll provides a terrific anchor for teaching photosynthesis in a biological, agricultural and global ecology context, thereby inspiring students to better appreciate the fascinating world of plants.  more » « less
Award ID(s):
1760839
NSF-PAR ID:
10163815
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Science scope
ISSN:
0887-2376
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Where does the carbon released by burning fossil fuels go? Currently, ocean and land systems remove about half of the CO 2 emitted by human activities; the remainder stays in the atmosphere. These removal processes are sensitive to feedbacks in the energy, carbon, and water cycles that will change in the future. Observing how much carbon is taken up on land through photosynthesis is complicated because carbon is simultaneously respired by plants, animals, and microbes. Global observations from satellites and air samples suggest that natural ecosystems take up about as much CO 2 as they emit. To match the data, our land models generate imaginary Earths where carbon uptake and respiration are roughly balanced, but the absolute quantities of carbon being exchanged vary widely. Getting the magnitude of the flux is essential to make sure our models are capturing the right pattern for the right reasons. Combining two cutting-edge tools, carbonyl sulfide (OCS) and solar-induced fluorescence (SIF), will help develop an independent answer of how much carbon is being taken up by global ecosystems. Photosynthesis requires CO 2 , light, and water. OCS provides a spatially and temporally integrated picture of the “front door” of photosynthesis, proportional to CO 2 uptake and water loss through plant stomata. SIF provides a high-resolution snapshot of the “side door,” scaling with the light captured by leaves. These two independent pieces of information help us understand plant water and carbon exchange. A coordinated effort to generate SIF and OCS data through satellite, airborne, and ground observations will improve our process-based models to predict how these cycles will change in the future. 
    more » « less
  2. Abstract Little is known about the chlorophyll fluorescence spectra for high latitude plants. A FluoWat leaf clip was used to measure leaf-level reflectance and chlorophyll fluorescence spectra of leaves of common high latitude plants to examine general spectral characteristics of these species. Fluorescence yield (Fyield) was calculated as the ratio of the emitted fluorescence divided by the absorbed radiation for the wavelengths from 400 nm up to the wavelength of the cut-off for the FluoWat low pass filter (either 650 or 700 nm). The Fyield spectra grouped into distinctly different patterns among different plant functional types. Black spruce ( Picea mariana ) Fyield spectra had little red fluorescence, which was reabsorbed in the shoot, but displayed a distinct far-red peak. Quaking aspen ( Populus tremuloides ) had both high red and far-red Fyield peaks, as did sweet coltsfoot ( Petasites frigidus ). Cotton grass ( Eriophorum spp.) had both red and far-red Fyield peaks, but these peaks were much lower than for aspen or coltsfoot. Sphagnum moss ( Sphagnum spp.) had a distinct Fyield red peak but low far-red fluorescence. Reindeer moss lichen ( Cladonia rangiferina ) had very low fluorescence levels, although when damp displayed a small red Fyield peak. These high latitude vegetation samples showed wide variations in Fyield spectral shapes. The Fyield values for the individual red or far-red peaks were poorly correlated to chlorophyll content, however the ratio of far-red to red Fyield showed a strong correlation with chlorophyll content. The spectral variability of these plants may provide information for remote sensing of vegetation type but may also confound attempts to measure high latitude vegetation biophysical characteristics and function using solar induced fluorescence (SIF). 
    more » « less
  3. Abstract

    Recent advances in satellite observations of solar‐induced chlorophyll fluorescence (SIF) provide a new opportunity to constrain the simulation of terrestrial gross primary productivity (GPP). Accurate representation of the processes driving SIF emission and its radiative transfer to remote sensing sensors is an essential prerequisite for data assimilation. Recently, SIF simulations have been incorporated into several land surface models, but the scaling of SIF from leaf‐level to canopy‐level is usually not well‐represented. Here, we incorporate the simulation of far‐red SIF observed at nadir into the Community Land Model version 5 (CLM5). Leaf‐level fluorescence yield was simulated by a parametric simplification of the Soil Canopy‐Observation of Photosynthesis and Energy fluxes model (SCOPE). And an efficient and accurate method based on escape probability is developed to scale SIF from leaf‐level to top‐of‐canopy while taking clumping and the radiative transfer processes into account. SIF simulated by CLM5 and SCOPE agreed well at sites except one in needleleaf forest (R2 > 0.91, root‐mean‐square error <0.19 W⋅m−2⋅sr−1⋅μm−1), and captured the day‐to‐day variation of tower‐measured SIF at temperate forest sites (R2 > 0.68). At the global scale, simulated SIF generally captured the spatial and seasonal patterns of satellite‐observed SIF. Factors including the fluorescence emission model, clumping, bidirectional effect, and leaf optical properties had considerable impacts on SIF simulation, and the discrepancies between simulate d and observed SIF varied with plant functional type. By improving the representation of radiative transfer for SIF simulation, our model allows better comparisons between simulated and observed SIF toward constraining GPP simulations.

     
    more » « less
  4. Abstract

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf‐level ChlF was linked with canopy‐scale solar‐induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts,USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R= 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively;P < 0.0001). We developed a model to estimateGPPfrom the tower‐based measurement ofSIFand leaf‐level ChlF parameters. The estimation ofGPPfrom this model agreed well with flux tower observations ofGPP(R= 0.68;P < 0.0001), demonstrating the potential ofSIFfor modelingGPP. At the leaf scale, we found that leafFq/Fm, the fraction of absorbed photons that are used for photochemistry for a light‐adapted measurement from a pulse amplitude modulation fluorometer, was the best leaf fluorescence parameter to correlate with canopySIFyield (SIF/APAR,R= 0.79;P < 0.0001). We also found that canopySIFandSIF‐derivedGPP(GPPSIF) were strongly correlated to leaf‐level biochemistry and canopy structure, including chlorophyll content (R= 0.65 for canopyGPPSIFand chlorophyll content;P < 0.0001), leaf area index (LAI) (R= 0.35 for canopyGPPSIFandLAI;P < 0.0001), and normalized difference vegetation index (NDVI) (R= 0.36 for canopyGPPSIFandNDVI;P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales.

     
    more » « less
  5. Abstract

    High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun‐induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high‐temperature experiment, Temperature Free‐Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high‐temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high‐temperature stress (partial correlationr = 0.60 and −0.23). Near‐infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (ΦF) signals. ΦFfurther excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that ΦFoutperformed SIF yield in responding to physiological stress (r = −0.37). Our findings highlight that ΦFsensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. ΦF, if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change.

     
    more » « less