Abstract High surface area graphitic mesoporous carbons (M‐mGMC; M=Ni, Fe, Co or Ni‐Fe) were synthesizedviacatalytic graphitization using a hard template based synthesis method. In house prepared SBA‐15 silica material was impregnated with metal precursors to obtain M/SBA‐15, template for M‐mGMC synthesis. These materials were studied using different material characterization techniques, such as nitrogen adsorption desorption (BET), X‐ray diffraction (XRD) analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Specific surface area ranging from 1,227.9 m2g−1to 1,320.7 m2g−1was observed for four M‐mGMCs. Raman spectroscopy, XPS and wide angle XRD suggested presence of graphitic structure in these materials along with disorders. Electrocatalytic performance of these materials along with conventional carbon black (Vulcan XC‐72) were evaluated in a single‐stack proton exchange membrane fuel cell (PEMFC). Pt/NiFe‐mGMC exhibited enhanced electrocatalytic activity compared to Pt/Ni‐mGMC, Pt/Fe‐mGMC and Pt/Co‐mGMC electrocatalysts. However, Pt/NiFe‐mGMC lacked adequate proton transport in membrane electrode assembly (MEA) compared to Pt/Vulcan XC‐72. This exploratory study showed that NiFe‐mGMC may find application as electrocatalyst support material in PEMFC.
more »
« less
Prussian blue-assisted one-pot synthesis of nitrogen-doped mesoporous graphitic carbon spheres for supercapacitors
Synthesis of nitrogen doped mesoporous graphitic carbon spheres with dispersed metal oxide nanoparticles using a single temperature treatment step serves as one of the big challenges in materials research. To date only a few reports have been published on the soft-templating synthesis of mesoporous graphitic carbons. The preparation of graphitic carbons with dispersed Fe 2 O 3 using a single carbonization step at relatively low temperatures is yet to be explored. The first phase of this work shows the potential of graphitization of polyvinylpyrrolidine (PVP) stabilized cubic Prussian blue nanoparticles (CPB) in phenolic resin spheres to produce graphitic carbon spheres through a facile Stöber-like method. In the second phase, the Pluronic F127 soft template was used along with PVP stabilized Prussian blue nanoparticles (PB) in carbon spheres to generate mesopores and graphitic domains with uniformly dispersed Fe 2 O 3 nanoparticles in these spheres. Due to the presence of graphitic layers, doped N species and Fe 2 O 3 nanoparticles in the carbon matrix, the yielded carbon spheres feature a high surface area and magnetic properties. Moreover, these graphitic spheres exhibited excellent capacitive behavior with rectangular cyclic voltammetry (CV) profiles and large capacitance up to 247 F g −1 at 1 mV s −1 scan rate in 6 M KOH solution.
more »
« less
- Award ID(s):
- 1659571
- PAR ID:
- 10163822
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 7
- Issue:
- 38
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 22092 to 22102
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Advances in the synthesis and processing of graphene-based materials have presented the opportunity to design novel lithium-ion battery (LIB) anode materials that can meet the power requirements of next-generation power devices. In this work, a poly(methacrylic acid) (PMAA)-induced self-assembly process was used to design super-mesoporous Fe 3 O 4 and reduced-graphene-oxide (Fe 3 O 4 @RGO) anode materials. We demonstrate the relationship between the media pH and Fe 3 O 4 @RGO nanostructure, in terms of dispersion state of PMAA-stabilized Fe 3 O 4 @GO sheets at different surrounding pH values, and porosity of the resulted Fe 3 O 4 @RGO anode. The anode shows a high surface area of 338.8 m 2 g −1 with a large amount of 10–40 nm mesopores, which facilitates the kinetics of Li-ions and electrons, and improves electrode durability. As a result, Fe 3 O 4 @RGO delivers high specific-charge capacities of 740 mA h g −1 to 200 mA h g −1 at various current densities of 0.5 A g −1 to 10 A g −1 , and an excellent capacity-retention capability even after long-term charge–discharge cycles. The PMAA-induced assembly method addresses the issue of poor dispersion of Fe 3 O 4 -coated graphene materials—which is a major impediment in the synthesis process—and provides a facile synthetic pathway for depositing Fe 3 O 4 and other metal oxide nanoparticles on highly porous RGO.more » « less
-
Abstract The electrochemical reduction of nitrates (NO3−) enables a pathway for the carbon neutral synthesis of ammonia (NH3), via the nitrate reduction reaction (NO3RR), which has been demonstrated at high selectivity. However, to make NH3synthesis cost‐competitive with current technologies, high NH3partial current densities (jNH3) must be achieved to reduce the levelized cost of NH3. Here, the high NO3RR activity of Fe‐based materials is leveraged to synthesize a novel active particle‐active support system with Fe2O3nanoparticles supported on atomically dispersed Fe–N–C. The optimized 3×Fe2O3/Fe–N–C catalyst demonstrates an ultrahigh NO3RR activity, reaching a maximum jNH3of 1.95 A cm−2at a Faradaic efficiency (FE) for NH3of 100% and an NH3yield rate over 9 mmol hr−1cm−2. Operando XANES and post‐mortem XPS reveal the importance of a pre‐reduction activation step, reducing the surface Fe2O3(Fe3+) to highly active Fe0sites, which are maintained during electrolysis. Durability studies demonstrate the robustness of both the Fe2O3particles and Fe–Nxsites at highly cathodic potentials, maintaining a current of −1.3 A cm−2over 24 hours. This work exhibits an effective and durable active particle‐active support system enhancing the performance of the NO3RR, enabling industrially relevant current densities and near 100% selectivity.more » « less
-
null (Ed.)Prussian blue is an iron-cyanide-based pigment steadily becoming a widely used electrochemical sensor in detecting hydrogen peroxide at low concentration levels. Prussian blue nanoparticles (PBNPs) have been extensively studied using traditional ensemble methods, which only provide averaged information. Investigating PBNPs at a single entity level is paramount for correlating the electrochemical activities to particle structures and will shed light on the major factors governing the catalyst activity of these nanoparticles. Here we report on using plasmonic electrochemical microscopy (PEM) to study the electrochemistry of PBNPs at the individual nanoparticle level. First, two types of PBNPs were synthesized; type I synthesized with double precursors method and type II synthesized with polyvinylpyrrolidone (PVP) assisted single precursor method. Second, both PBNPs types were compared on their electrochemical reduction to form Prussian white, and the effect from the different particle structures was investigated. Type I PBNPs provided better PEM sensitivity and were used to study the catalytic reduction of hydrogen peroxide. Progressively decreasing plasmonic signals with respect to increasing hydrogen peroxide concentration were observed, demonstrating the capability of sensing hydrogen peroxide at a single nanoparticle level utilizing this optical imaging technique.more » « less
-
Abstract Atomically dispersed and nitrogen coordinated single metal sites (M‐N‐C, M=Fe, Co, Ni, Mn) are the popular platinum group‐metal (PGM)‐free catalysts for many electrochemical reactions. Traditional wet‐chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M‐N‐C catalysts. The deposition of gaseous 2‐methylimidazole onto M‐doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD‐derived Fe‐N‐C catalyst exclusively contains atomically dispersed FeN4sites with increased Fe loading relative to other catalysts from wet‐chemistry synthesis. The catalyst exhibited outstanding oxygen‐reduction activity in acidic electrolytes, which was further studied in proton‐exchange membrane fuel cells with encouraging performance.more » « less
An official website of the United States government

