skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Chemical Vapor Deposition for Atomically Dispersed and Nitrogen Coordinated Single Metal Site Catalysts
Abstract

Atomically dispersed and nitrogen coordinated single metal sites (M‐N‐C, M=Fe, Co, Ni, Mn) are the popular platinum group‐metal (PGM)‐free catalysts for many electrochemical reactions. Traditional wet‐chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M‐N‐C catalysts. The deposition of gaseous 2‐methylimidazole onto M‐doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD‐derived Fe‐N‐C catalyst exclusively contains atomically dispersed FeN4sites with increased Fe loading relative to other catalysts from wet‐chemistry synthesis. The catalyst exhibited outstanding oxygen‐reduction activity in acidic electrolytes, which was further studied in proton‐exchange membrane fuel cells with encouraging performance.

 
more » « less
Award ID(s):
1804326
NSF-PAR ID:
10236951
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
48
ISSN:
1433-7851
Page Range / eLocation ID:
p. 21698-21705
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Atomically dispersed and nitrogen coordinated single metal sites (M‐N‐C, M=Fe, Co, Ni, Mn) are the popular platinum group‐metal (PGM)‐free catalysts for many electrochemical reactions. Traditional wet‐chemistry catalyst synthesis often requires complex procedures with unsatisfied reproducibility and scalability. Here, we report a facile chemical vapor deposition (CVD) strategy to synthesize the promising M‐N‐C catalysts. The deposition of gaseous 2‐methylimidazole onto M‐doped ZnO substrates, followed by an in situ thermal activation, effectively generated single metal sites well dispersed into porous carbon. In particular, an optimal CVD‐derived Fe‐N‐C catalyst exclusively contains atomically dispersed FeN4sites with increased Fe loading relative to other catalysts from wet‐chemistry synthesis. The catalyst exhibited outstanding oxygen‐reduction activity in acidic electrolytes, which was further studied in proton‐exchange membrane fuel cells with encouraging performance.

     
    more » « less
  2. Abstract

    Atomically dispersed and nitrogen coordinated single metal site (MNx, M = Fe, Co, or Mn) moieties embedded in partially graphitized carbon (denoted as M–N–C) are recognized as the most promising platinum group metal‐free catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. However, simply regulating their coordination environments and local structures of single metal sites cannot fundamentally change active site structure, which leads to insufficient activity and stability. A second transition metal can be incorporated to design dual‐metal sites, offering a new opportunity to modulate the electronic and geometric structures of M–N–C catalysts. Therefore, exploring optimal atomically dispersed dual‐metal‐site is essential to designing new active sites with enhanced ORR activity, and stability, especially breaking the activity‐stability trade‐off. This review provides a comprehensive analysis of the advances in developing atomically dispersed dual‐metal site catalysts for the ORR, including innovative synthesis methods, primary structural configurations, and the mechanisms to promote catalytic performance. We aim to elucidate the crucial structure–property correlation, emphasizing the inherent electronic and geometric effects of dual metal sites. Finally, we discuss the current challenges of dual‐metal site catalysts concerning rational design, precise synthesis, and high‐fidelity structural characterization.

     
    more » « less
  3. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  4. Abstract

    High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+and H2O2generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.

     
    more » « less
  5. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containing acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells. 
    more » « less