Establishing and sustaining a sense of belonging is a necessary human motivation with particular implications for student learning, including in engineering. Students who experience a sense of belonging are more likely to display intrinsic motivation and establish a stronger sense of identity and persistence. It is important, however, to distinguish different domains of belonging, such as belonging to one’s university, belonging to a major, and belonging in the classroom setting. Our study examines if and how faculty support efforts contribute to diverse students’ sense of belonging in the classroom setting. Specifically, we sought to answer the following research questions: Which faculty support efforts promote a sense of classroom belongingness? Do faculty support efforts differentially promote a sense of classroom belongingness for students based on their demographic characteristics? Data for this study was collected in the Fall of 2018, across ten institutions, n = 819. We used the Faculty Support items from the STEM Student Perspectives of Support Instrument developed from Lee’s model of co-curricular support to answer our research questions. Demographic categories were created to understand if and how faculty support efforts differentially promote a sense of belonging for minoritized students compared to their counterparts. Multiple regression analysis was conductedmore »
Reducing Student Resistance to Active Learning: Development and Validation of a Measure.
The goal of the study presented here was to test the reliability and validity of faculty responses to the Strategies to Reduce Student Resistance (SRSR) a measure of Science, Engineering, and Mathematics university faculty use and motivation (self-efficacy and value) for using instructional strategies to reduce student resistance to active learning. The development of this measure will support research and interventions designed to support faculty implementation of active learning strategies.
The scale examined here was adapted from a student version, developed and tested as part of a national study on student resistance to active learning in engineering programs. This project reveled a set of faculty behaviors which supported students’ positive response to active learning strategies (Authors, 2017). Although student perspectives on faculty behavior is important, we felt it was necessary to adapt the scale to measure faculty’s perspectives on the strategies they use and their motivation to use those strategies as part of their use of active learning in their classroom.
- Award ID(s):
- 1821488
- Publication Date:
- NSF-PAR ID:
- 10163846
- Journal Name:
- CANCELLED: American Educational Research Association Annual Meeting, San Francisco, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Who and by what means do we ensure that engineering education evolves to meet the ever changing needs of our society? This and other papers presented by our research team at this conference offer our initial set of findings from an NSF sponsored collaborative study on engineering education reform. Organized around the notion of higher education governance and the practice of educational reform, our open-ended study is based on conducting semi-structured interviews at over three dozen universities and engineering professional societies and organizations, along with a handful of scholars engaged in engineering education research. Organized as a multi-site, multi-scale study, our goal is to document differences in perspectives and interest the exist across organizational levels and institutions, and to describe the coordination that occurs (or fails to occur) in engineering education given the distributed structure of the engineering profession. This paper offers for all engineering educators and administrators a qualitative and retrospective analysis of ABET EC 2000 and its implementation. The paper opens with a historical background on the Engineers Council for Professional Development (ECPD) and engineering accreditation; the rise of quantitative standards during the 1950s as a result of the push to implement an engineering science curriculum appropriate tomore »
-
The Academy of Engineering Success (AcES) program, established in 2012 and supported by NSF S-STEM award number 1644119 throughout 2016-2021, employs literature-based, best practices to support and retain underprepared and underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. A total of 71 students, including 21 students supported by S-STEM scholarships, participated in the AcES program between 2016-2019 at a large R1 institution in the mid-Atlantic region. All AcES students participate in a common program during their first year, comprised of: a one-week summer bridge experience, a common fall professional development course and spring “Engineering in History” course, and a common academic advisor. These students also have opportunities for: (1) faculty-student, student-student, and industry mentor-student interaction, (2) academic support and student success education, and (3) major and career exploration – all designed to help students develop feelings of institutional inclusion, engineering self-efficacy and identity, and academic and professional success skills. They also participate in the GRIT, Longitudinal Assessment of Engineering Self-Efficacy (LAESE), and the Motivated Strategies for Learning Questionnaire (MSLQ) surveys plus individual and focus group interviews at the start, midpoint, and end of each fall semester and at the end of the springmore »
-
The purpose of this study is to re-examine the validity evidence of the engineering design self-efficacy (EDSE) scale scores by Carberry et al. (2010) within the context of secondary education. Self-efficacy refers to individuals’ belief in their capabilities to perform a domain-specific task. In engineering education, significant efforts have been made to understand the role of self-efficacy for students considering its positive impact on student outcomes such as performance and persistence. These studies have investigated and developed measures for different domains of engineering self-efficacy (e.g., general academic, domain-general, and task-specific self-efficacy). The EDSE scale is a frequently cited measure that examines task-specific self-efficacy within the domain of engineering design. The original scale contains nine items that are intended to represent the engineering design process. Initial score validity evidence was collected using a sample consisting of 202 respondents with varying degrees of engineering experience including undergraduate/graduate students and faculty members. This scale has been primarily used by researchers and practitioners with engineering undergraduate students to assess changes in their engineering design self-efficacy as a result of active learning interventions, such as project-based learning. Our work has begun to experiment using the scale in a secondary education context in conjunction with anmore »
-
The development of tools that promote active learning in engineering disciplines is critical. It is widely understood that students engaged in active learning environments outperform those taught using passive methods. Previously, we reported on the development and implementation of hands-on Low-Cost Desktop Learning Modules (LCDLMs) that replicate real-world industrial equipment which serves to create active learning environments. Thus far, miniaturized venturi meter, hydraulic loss, and double-pipe and shell & tube heat exchanger DLMs have been utilized by hundreds of students across the country. It was demonstrated that the use of DLMs in face-to-face classrooms results in statistically significant improvements in student performance as well as increases in student motivation compared to students taught in a traditional lecture-only style classroom. Last year, participants in the project conducted 45 implementations including over 600 DLMs at 24 universities across the country reaching more than 1,000 students. In this project, we report on the significant progress made in broad dissemination of DLMs and accompanying pedagogy. We demonstrate that DLMs serve to increase student learning gains not only in face-to-face environments but also in virtual learning environments. Instructional videos were developed to aid in DLM-based learning during the COVID-19 pandemic when instructors were limited tomore »