skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mueller matrix ellipsometer using dual continuously rotating anisotropic mirrors
We demonstrate calibration and operation of a single wavelength (660 nm) Mueller matrix ellipsometer in normal transmission configuration using dual continuously rotating anisotropic mirrors. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick gold layers on glass substrates. Upon rotation around the mirror normal axis, sufficient modulation of the Stokes parameters of light reflected at oblique angle of incidence is achieved. Thereby, the mirrors can be used as a polarization state generator and polarization state analyzer in a generalized ellipsometry instrument. A Fourier expansion approach is found sufficient to render and calibrate the effects of the mirror rotations onto the polarized light train within the ellipsometer. The Mueller matrix elements of a set of anisotropic samples consisting of a linear polarizer and a linear retarder are measured and compared with model data, and very good agreement is observed.  more » « less
Award ID(s):
1808715
PAR ID:
10163922
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
13
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 3541
Size(s):
Article No. 3541
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate calibration and operation of a Mueller matrix imaging microscope using dual continuously rotating anisotropic mirrors for polarization state generation and analysis. The mirrors contain highly spatially coherent nanostructure slanted columnar titanium thin films deposited onto optically thick titanium layers on quartz substrates. The first mirror acts as polarization state image generator and the second mirror acts as polarization state image detector. The instrument is calibrated using samples consisting of laterally homogeneous properties such as straight-through-air, a clear aperture linear polarizer, and a clear aperture linear retarder waveplate. Mueller matrix images are determined for spatially varying anisotropic samples consisting of a commercially available (Thorlabs) birefringent resolution target and a spatially patterned titanium slanted columnar thin film deposited onto a glass substrate. Calibration and operation are demonstrated at a single wavelength (530 nm) only, while, in principle, the instrument can operate regardless of wavelength. We refer to this imaging ellipsometry configuration as rotating-anisotropic-mirror-sample-rotating-anisotropic-mirror ellipsometry (RAM-S-RAM-E). 
    more » « less
  2. We present a simple experiment developed for the advanced physics instructional laboratory to calculate the Mueller matrix of a microscopic sample. The Mueller matrix is obtained from intensity-based images of the sample acquired by a polarization-sensitive microscope. The experiment requires a bright-field microscope and standard polarizing optical components such as linear polarizers and waveplates. We provide a practical procedure for implementing the apparatus, measuring the complete Mueller matrix of linear polarizers used as samples, and discuss the possibility of analyzing biological samples using our apparatus and method. Due to the simplicity of the apparatus and method, this experiment allows students to increase their knowledge about light polarization and initiate their training in optical instrumentation. 
    more » « less
  3. Abstract This study delves into the polarization properties of various hair colors using several techniques, including polarization ray tracing, full Stokes, and Mueller matrix imaging. Our analysis involved studying hair in both indoor and outdoor settings under varying lighting conditions. Our results demonstrate a strong correlation between hair color and the degree of linear polarization. Specifically, light-colored hair, such as white and blond, exhibits high albedo and low DoLP. In contrast, dark hair, like black and brown hair, has low albedo and high DoLP. Our research also revealed that a single hair strand displays high diattenuation near specular reflections but high depolarization in areas with diffuse reflections. Additionally, we investigated the wavelength dependency of the polarization properties by comparing the Mueller matrix under illumination at 450 nm and 589 nm. Our investigation demonstrates the impact of hair shade and color on polarization properties and the Umov effect. 
    more » « less
  4. Abstract Dielectric mirrors comprising thin‐film multilayers are widely used in optical experiments because they can achieve substantially higher reflectance compared to metal mirrors. Here, potential problems are investigated that can arise when dielectric mirrors are used at oblique incidence, in particular for focused beams. It is found that light beams reflected from dielectric mirrors can experience lateral beam shifts, beam‐shape distortion, and depolarization, and these effects have a strong dependence on wavelength, incident angle, and incident polarization. Because vendors of dielectric mirrors typically do not share the particular layer structure of their products, several dielectric‐mirror stacks are designed and simulated, and then the lateral beam shift from two commercial dielectric mirrors and one coated metal mirror is also measured. This paper brings awareness of the tradeoffs between dielectric mirrors and front‐surface metal mirrors in certain optics experiments, and it is suggested that vendors of dielectric mirrors provide information about beam shifts, distortion, and depolarization when their products are used at oblique incidence. 
    more » « less
  5. Tailoring optical and radiative properties has attracted significant attention recently due to its importance in advanced energy systems, nanophotonics, electro-optics, and nanomanufacturing. Metamaterials with micro- and nanostructures exhibit exotic radiative properties with tunability across the spectrum, direction, and polarization. Structures made from anisotropic or nanostructured materials have shown polarization-selective absorption bands in the mid-infrared. Characterizing the optical and radiative properties of such materials is crucial for both fundamental research and the development of practical applications. Mueller matrix ellipsometry offers a nondestructive and noninvasive technique for characterizing radiative properties. Although such ellipsometers have long been used to measure optical properties, their operational bandwidth is usually limited to the visible to near-infrared range, leaving the mid-infrared largely unexplored. In this work, a broadband mid-infrared ellipsometer, operating from 2 to 15 μm, is designed and constructed to measure 12 elements of the Mueller matrix. The results may be used to determine the full Mueller matrix under specific conditions. The performance of the ellipsometer is evaluated using nanostructured materials, including a 1D grating and a chiral F-shaped metasurface. The measurement results compared well to those obtained from rigorous-coupled-wave analysis and finite-difference time-domain simulations, suggesting that this setup offers a useful tool in optical property retrieval and the assessment of nanostructured materials. 
    more » « less