skip to main content

Title: Employing attack graphs for intrusion detection
Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept of attack graphs. Attack graphs were proposed to study how multi-stage attacks could be launched by exploiting known vulnerabilities. Instead of constructing attacks reactively, we propose to apply attack graphs proactively to detect sequences of events that fulfill the requirements for vulnerability exploitation. Using this insight, we examine how to generate modular attack graphs automatically that relate adversary accessibility for each component, called its attack surface, to flaws that provide adversaries with permissions that create threats, called attack states, and exploit operations from those threats, called attack actions. We evaluate the proposed approach by applying it to two case studies: (1) attacks on file retrieval, such as TOCTTOU attacks, and (2) attacks propagated among processes, such as attacks on Shellshock vulnerabilities. In these case more » studies, we demonstrate how to leverage existing tools to compute attack graphs automatically and assess the effectiveness of these tools for building complete attack graphs. While we identify some research areas, we also find several reasons why attack graphs can provide a valuable foundation for improving future intrusion detection systems. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1801534 1816282
Publication Date:
NSF-PAR ID:
10163950
Journal Name:
New Security Paradigms Workshop
Page Range or eLocation-ID:
16 to 30
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks.more »This study sheds new light on the device vulnerabilities of today’s IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today’s IoT-based attacks.« less
  2. Recent years have witnessed the rise of Internet-of-Things (IoT) based cyber attacks. These attacks, as expected, are launched from compromised IoT devices by exploiting security flaws already known. Less clear, however, are the fundamental causes of the pervasiveness of IoT device vulnerabilities and their security implications, particularly in how they affect ongoing cybercrimes. To better understand the problems and seek effective means to suppress the wave of IoT-based attacks, we conduct a comprehensive study based on a large number of real-world attack traces collected from our honeypots, attack tools purchased from the underground, and information collected from high-profile IoT attacks.more »This study sheds new light on the device vulnerabilities of today's IoT systems and their security implications: ongoing cyber attacks heavily rely on these known vulnerabilities and the attack code released through their reports; on the other hand, such a reliance on known vulnerabilities can actually be used against adversaries. The same bug reports that enable the development of an attack at an exceedingly low cost can also be leveraged to extract vulnerability-specific features that help stop the attack. In particular, we leverage Natural Language Processing (NLP) to automatically collect and analyze more than 7,500 security reports (with 12,286 security critical IoT flaws in total) scattered across bug-reporting blogs, forums, and mailing lists on the Internet. We show that signatures can be automatically generated through an NLP-based report analysis, and be used by intrusion detection or firewall systems to effectively mitigate the threats from today's IoT-based attacks.« less
  3. Cyber-threats are continually evolving and growing in numbers and extreme complexities with the increasing connectivity of the Internet of Things (IoT). Existing cyber-defense tools seem not to deter the number of successful cyber-attacks reported worldwide. If defense tools are not seldom, why does the cyber-chase trend favor bad actors? Although cyber-defense tools monitor and try to diffuse intrusion attempts, research shows the required agility speed against evolving threats is way too slow. One of the reasons is that many intrusion detection tools focus on anomaly alerts’ accuracy, assuming that pre-observed attacks and subsequent security patches are adequate. Well, that ismore »not the case. In fact, there is a need for techniques that go beyond intrusion accuracy against specific vulnerabilities to the prediction of cyber-defense performance for improved proactivity. This paper proposes a combination of cyber-attack projection and cyber-defense agility estimation to dynamically but reliably augur intrusion detection performance. Since cyber-security is buffeted with many unknown parameters and rapidly changing trends, we apply a machine learning (ML) based hidden markov model (HMM) to predict intrusion detection agility. HMM is best known for robust prediction of temporal relationships mid noise and training brevity corroborating our high prediction accuracy on three major open-source network intrusion detection systems, namely Zeek, OSSEC, and Suricata. Specifically, we present a novel approach for combined projection, prediction, and cyber-visualization to enable precise agility analysis of cyber defense. We also evaluate the performance of the developed approach using numerical results.« less
  4. One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in differentmore »locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures, adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.« less
  5. Industrial control systems (ICS) include systems that control industrial processes in critical infrastructure such as electric grids, nuclear power plants, manufacturing plans, water treatment systems, pharmaceutical plants, and building automation systems. ICS represent complex systems that contain an abundance of unique devices all of which may hold different types of software, including applications, firmware and operating systems. Due to their ability to control physical infrastructure, ICS have more and more become targets of cyber-attacks, increasing the risk of serious damage, negative financial impact, disruption to business operations, disruption to communities, and even the loss of life. Ethical hacking represents onemore »way to test the security of ICS. Ethical hacking consists of using a cyber-attacker's perspective and a variety of cybersecurity tools to actively discover vulnerabilities and entry points for potential cyber-attacks. However, ICS ethical hacking represents a difficult task due to the wide variety of devices found on ICS networks. Most ethical hackers do not hold expertise or knowledge about ICS hardware, device computing elements, protocols, vulnerabilities found on these elements, and exploits used to exploit these vulnerabilities. Effective approaches are needed to reduce the complexity of ICS ethical hacking tasks. In this study, we use ontology modeling, a knowledge representation approach in artificial intelligence (AI), to model data that represent ethical hacking tasks of building automation systems. With ontology modeling, information is stored and represented in the form of semantic graphs that express individuals, their properties, and the relations between multiple individuals. Data are drawn from sources such as the National Vulnerability Database, ExploitDB, Common Weakness Enumeration (CWE), the Common Attack Pattern and Enumeration Classification (CAPEC), and others. We show, through semantic queries, how the ontology model can automatically link together entities such as software names and versions of ICS software, vulnerabilities found on those software instances, vulnerabilities found on the protocols used by the software, exploits found on those vulnerabilities, weaknesses that represent those vulnerabilities, and attacks that can exploit those weaknesses. The ontology modeling of ICS ethical hacking and the semantic queries run over the model can reduce the complexity of ICS hacking tasks.« less