Abstract Mitigation and adaptation strategies for climate change depend on accurate climate projections for the coming decades. While changes in radiative heat fluxes are known to contribute to surface warming, changes to ocean circulation can also impact the rate of surface warming. Previous studies suggest that projected changes to ocean circulation reduce the rate of global warming. However, these studies consider large greenhouse gas forcing scenarios, which induce a significant buoyancy‐driven decline of the Atlantic Meridional Overturning Circulation. Here, we use a climate model to quantify the previously unknown impact of changes to wind‐driven ocean circulation on global surface warming. Wind‐driven ocean circulation changes amplify the externally forced warming rate by 17% from 1979 to 2014. Accurately simulating changes to the atmospheric circulation is key to improving near‐term climate projections.
more »
« less
Slower nutrient stream suppresses Subarctic Atlantic Ocean biological productivity in global warming
Earth system models (ESMs) project that global warming suppresses biological productivity in the Subarctic Atlantic Ocean as increasing ocean surface buoyancy suppresses two physical drivers of nutrient supply: vertical mixing and meridional circulation. However, the quantitative sensitivity of productivity to surface buoyancy is uncertain and the relative importance of the physical drivers is unknown. Here, we present a simple predictive theory of how mixing, circulation, and productivity respond to increasing surface buoyancy in 21st-century global warming scenarios. With parameters constrained by observations, the theory suggests that the reduced northward nutrient transport, owing to a slower ocean circulation, explains the majority of the reduced productivity in a warmer climate. The theory also informs present-day biases in a set of ESM simulations as well as the physical underpinnings of their 21st-century projections. Hence, this theoretical understanding can facilitate the development of improved 21st-century projections of marine biogeochemistry and ecosystems.
more »
« less
- Award ID(s):
- 1846821
- PAR ID:
- 10164025
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 27
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 15504-15510
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cloud phase improvements in a state‐of‐the‐art climate model produce a large 1.5 K increase in equilibrium climate sensitivity (ECS, the surface warming in response to instantaneously doubled CO2) via extratropical shortwave cloud feedbacks. Here we show that the same model improvements produce only a small surface warming increase in a realistic 21st century emissions scenario. The small 21st century warming increase is attributed to extratropical ocean heat uptake. Southern Ocean mean‐state circulation takes up heat while a slowdown in North Atlantic circulation acts as a feedback to slow surface warming. Persistent heat uptake by extratropical oceans implies that extratropical cloud biases may not be as important to 21st century warming as biases in other regions. Observational constraints on cloud phase and shortwave radiation that produce a large ECS increase do not imply large changes in 21st century warming.more » « less
-
Abstract The Global Ocean Biogeochemistry (GO-BGC) Array is a project funded by the US National Science Foundation to build a global network of chemical and biological sensors on Argo profiling floats. The network will monitor biogeochemical cycles and ocean health. The floats will collect from a depth of 2,000 meters to the surface, augmenting the existing Argo array that monitors ocean temperature and salinity. Data will be made freely available within a day of being collected via the Argo data system. These data will allow scientists to pursue fundamental questions concerning ocean ecosystems, monitor ocean health and productivity, and observe the elemental cycles of carbon, oxygen, and nitrogen through all seasons of the year. Such essential data are needed to improve computer models of ocean fisheries and climate, to monitor and forecast the effects of ocean warming and ocean acidification on sea life, and to address key questions identified in “Sea Change: 2015‐2025 Decadal Survey of Ocean Sciences” such as: What is the ocean's role in regulating the carbon cycle? What are the natural and anthropogenic drivers of open ocean deoxygenation? What are the consequences of ocean acidification? How do physical changes in mixing and circulation affect nutrient availability and ocean productivity?more » « less
-
null (Ed.)Abstract. While there is agreement that global warming over the 21st century is likely to influence the biological pump, Earth system models (ESMs) display significant divergence in their projections of future new production. This paper quantifies and interprets the sensitivity of projected changes in new production in an idealized global ocean biogeochemistry model. The model includes two tracers that explicitly represent nutrient transport, light- and nutrient-limited nutrient uptake by the ecosystem (new production), and export via sinking organic particles. Globally, new production declines with warming due to reduced surface nutrient availability, as expected. However, the magnitude, seasonality, and underlying dynamics of the nutrient uptake are sensitive to the light and nutrient dependencies of uptake, which we summarize in terms of a single biological timescale that is a linear combination of the partial derivatives of production with respect to light and nutrients. Although the relationships are nonlinear, this biological timescale is correlated with several measures of biogeochemical function: shorter timescales are associated with greater global annual new production and higher nutrient utilization. Shorter timescales are also associated with greater declines in global new production in a warmer climate and greater sensitivity to changes in nutrients than light. Future work is needed to characterize more complex ocean biogeochemical models in terms of similar timescale generalities to examine their climate change implications.more » « less
-
Abstract Ocean circulation supplies the surface ocean with the nutrients that fuel global ocean productivity. However, the mechanisms and rates of water and nutrient transport from the deep ocean to the upper ocean are poorly known. Here, we use the nitrogen isotopic composition of nitrate to place observational constraints on nutrient transport from the Southern Ocean surface into the global pycnocline (roughly the upper 1.2 km), as opposed to directly from the deep ocean. We estimate that 62 ± 5% of the pycnocline nitrate and phosphate originate from the Southern Ocean. Mixing, as opposed to advection, accounts for most of the gross nutrient input to the pycnocline. However, in net, mixing carries nutrients away from the pycnocline. Despite the quantitative dominance of mixing in the gross nutrient transport, the nutrient richness of the pycnocline relies on the large-scale advective flow, through which nutrient-rich water is converted to nutrient-poor surface water that eventually flows to the North Atlantic.more » « less